ANNEX TO NPL CERTIFICATE FOR BICONICAL-LOG/HYBRID ANTENNAS

Antenna Factor, general comments

The antenna factors are valid for any separation distance from the source exceeding one wavelength. For distances less than 10 m, the change in antenna factor with distance becomes significant when a fixed reference point on the antenna is assumed, and additional uncertainty would therefore be introduced. This is expanded in the section on Phase Centre.

When the antenna is used for emission testing at a distance of 3 m from an equipment under test, whose size does not exceed that of the biconical antenna, there is an estimated increase in uncertainty of ± 0.3 dB in the range 50 MHz to 100 MHz, which is caused by mutual coupling of the antenna to the EUT (equipment under test). Below 100 MHz the antenna is in the near-field of the EUT and though the field magnitude will be correctly measured there will be additional uncertainty if the field strength were extrapolated to a greater distance. For extrapolation to a distance of 10 m, which is effectively in the far-field, this uncertainty is estimated to be ± 0.2 dB at 100 MHz and ± 1 dB at 30 MHz.

Where there is a sharp resonance in the antenna factor the uncertainty given in the certificate does not apply. At the frequency where the resonance causes a deviation of greater than 1 dB from the overall trend of the data, the magnitude of the increased uncertainty can be estimated from the height of the spike on the antenna factor graph. The affected range can be taken as ± 1.5 % of the centre frequency. Because the data is sampled at discrete points the maximum error may be much larger than that shown in the antenna factor graph.

If the antenna is used in an unlined screened room the use of these antenna factors may not give the absolute value of field strengths, but a calibration provides an essential check that the antenna is working properly. The antenna factors can be used to compare measurements made in an identical setup using a different antenna of the same type.

There is a further error arising from the directive nature of the antenna radiation, which is greater at the higher frequencies. In a normal height scan up to 4 m, on a 10 m range, the signal maximum can be reduced by up to 0.5 dB compared with that for a uniform radiation pattern. For a 3 m range this error could be up to 2 dB (given that the signal maximum is normally achieved at a height of less than 2.5 m).

The majority of LPDA (log-periodic dipole array) antennas have elements in echelon, which causes sensitivity to cross-polarised fields. This applies to the log part of a biconical-log/hybrid antenna. At the higher end of the operating frequency range of the antenna, the elements are short and the step between each half of one dipole element is pronounced. In the extreme case this can cause greater sensitivity to cross-polarised fields than co-polarised fields. The uncertainty in the antenna factor in the certificate may have been increased to reflect poor cross-polar rejection of the LPDA.

Antenna Factor, up to 200 MHz

In this frequency range the biconical-log/hybrid antenna has similar characteristics to a bicone antenna. In order to measure the absolute E-field at different heights and polarisations above the ground plane it is necessary to know the antenna factor at each height and polarisation. However, a viable alternative is to use the free-space antenna factor for every configuration which minimises the additional uncertainty incurred. The additional uncertainty is caused by coupling of the antenna with its image in the ground plane which results in a change in the

input impedance. For vertical polarisation there is no additional uncertainty for heights above 1.5 m, but between 1 m and 1.5 m the additional uncertainty is ± 0.7 dB in the range 50 MHz to 100 MHz. For horizontal polarisation, at heights above 1 m, the antenna factor may differ from the quoted values by up to ± 0.5 dB in the range 20 MHz to 50 MHz, and by ± 1.5 dB in the range 50 MHz to 100 MHz, and by ± 1 dB in the range 100 MHz to 200 MHz. The values for horizontal polarisation can be reduced by 0.5 dB for antenna heights above 2 m. The above variations are representative; the exact variation will vary slightly according to each antenna design.

Antenna Factor, above 200 MHz

In this frequency range the biconical-log/hybrid antenna has similar characteristics to a LPDA antenna. If the antenna is used horizontally polarised during a height scan from 1 m to 4 m above a ground plane, the antenna factors may differ from the values quoted by up to ± 0.5 dB. This is because the input impedance of the antenna changes due to coupling with its image in the ground plane. This coupling is greatest at the lower frequencies where the wavelength is a larger fraction of the height above the ground plane. When the antenna is used vertically polarised, there is no significant coupling with the ground plane, but the cable should extend horizontally behind the antenna for at least 2 m before dropping to ground in order to minimise parasitic reflections.

Phase Centre

When a LPDA is receiving E-field radiation the phase centre is the active part of the antenna at any given frequency. The active part of the antenna corresponds approximately to the position of the element whose length is equal to that of the equivalent resonant half wave dipole for the received frequency. The gap between the bicone component on a biconical-log/hybrid antenna and its LPDA part may also be considered as having a phase centre. This phase centre here is apparent to the user and is caused by the gradual shift of the complex current distribution from the LPDA part to the bicone part.

The quoted uncertainty in antenna factor is only valid when the phase centre is placed at the point at which the field is required to be measured. If the antenna position is not adjusted with frequency to make this condition true, a correction should be made to the measured field (at the phase centre position). This is valid in free-space conditions but there is additional uncertainty when applied to a LPDA above a ground plane. For distances of greater than one wavelength from the antenna a reduction of the field proportional to the inverse of the distance can be assumed, which means that in an anechoic environment a linear extrapolation may be used to adjust the field strength. The adjustment of antenna factor to a fixed reference point on the antenna is described later in the annex. For measurements made over a ground plane this correction has to be calculated using the difference in E_{Dmax} [1].

The NPL certificate contains an expression which allows the phase centre at any frequency to be calculated. This approximation is derived from some equations which govern LPDA antennas with triangular profiles (i.e. where the element tips form a straight line). Hence larger errors in the predicted phase centre will occur when these expressions are used for tapered antennas. The values for the constants, which are given in the NPL certificate are derived from the following equations :-

$$\delta = \frac{X_L \cdot L_H - X_H \cdot L_L}{L_L - L_H} \qquad Tan\alpha = \frac{L_L}{2 * (X_L + \delta)}$$

Version 03: amended on 30 March 2006

$$X_F = \frac{71.2}{Tan\alpha} \cdot \frac{1}{F_{MHz}} - \delta$$

Where :

 L_L and $L_H =$ The lengths of two well spaced elements which reside towards the Low and High frequency ends of the LPDA respectively.

 X_L and X_H = The distance from the tip to the same two elements.

If the above corrections are not feasible then an alternative strategy is available. This method, which may be applied in an anechoic chamber or near signal maxima during a height scan, uses a fixed phase centre, whose position is chosen in order to weight the incurred error evenly at either end of the operating frequency band. The fixed phase centre, X_{FIX} , is given by :-

$$X_{FIX} = \frac{1}{2} \cdot \left[X_{LOW} + X_{HIGH} \right]$$

The error incurred, U_E, at either end of the operating band is given by :-

$$U_{E} = \pm 20 * Log_{10} \left\{ \frac{R - \left[\frac{X_{LOW} - X_{HIGH}}{2}\right]}{R} \right\}$$

Where :- X_{LOW} = The phase centre of the low frequency operating limit. X_{HIGH} = The phase centre of the high frequency operating limit. R = The required separation to the EUT (i.e. 10 m or 3 m).

Between the last element on the LPDA and the bicone elements the best approximation to the phase centre is a linear extrapolation of frequency with distance along the central transmission line of the antenna. The assumptions are that the frequency of the longest LPDA element is calculated by converting its length to the corresponding resonant half-wave dipole frequency, and the frequency of the bicone element is given by the low frequency limit of the operating band.

For most common designs the calculated fixed phase centre (X_{FIX}) will be approximately half way between the actual tip of the antenna and the lowest frequency element. Thus, for simplicity, the reference point is often obtained by halving the distance from the tip to the back element.

Balance Test, (applies to frequencies up to 300 MHz)

The balance of the antenna balun may be tested by mounting the vertically polarised antenna in a uniform vertically polarised electric field, and observing the difference in received signal when the antenna is inverted. The change is caused by common mode current on the cable which is caused by an unbalance of the balun. It is important for this test that the cable hangs vertically behind the antenna in the usual manner. For this test there should be a horizontal distance of between 0.5 m and 2 m from the antenna element to the point at which the cable drops vertically. The cable should not move during the course of the measurements. An antenna is considered to have a good balun balance when the observed difference is less than ± 0.5 dB.

The inversion test is a qualitative measurement which reveals imbalance of the balun which, for some models of biconical antenna, can cause a large uncertainty in the measured field

Version 03: amended on 30 March 2006

when the output cable is aligned parallel to the antenna elements. It is recommended that the user conducts tests of their own to quantify this effect in each particular measurement configuration. For antenna models with significant balun imbalance it is recommended that ferrite clamps are placed on the cable near the antenna input when the antenna is used for emission testing. Ferrite clamps on the output cable only provide a partial reduction of the braid current; a better solution is to use a perfectly balanced balun.

Return Loss

The quoted antenna factors apply when the mismatch between the antenna and the receiver is attenuated. A well matched 10 dB attenuator is recommended. If no attenuator is used (and the receiver front-end attenuation is set to zero), the antenna factor can change by \pm 1.5 dB at 30 MHz, assuming a receiver return loss of greater than 14 dB, an antenna return loss of 0.4 dB and a cable loss of 1 dB.

Height Scan

During a height scan from 1 m to 4 m during emission measurements there will be an additional uncertainty caused by the directivity of the vertical radiation pattern. On a 10 m range the signal maxima, for frequencies below 200 MHz, occur for antenna heights less than 2.5 m and the error here will be negligible; but for a 3 m range the received signal could decrease by more than 1 dB. Above 200 MHz the directivity is greater and on a 10 m range the signal maxima can be reduced by up to 0.5 dB compared with that for a uniform radiation pattern. For a 3 m range this error above 200 MHz could be more than 2 dB, given that the signal maximum is normally achieved at a height of less than 2.5 m).

Adjusted Antenna Factor

We can calculate an adjustment to the antenna factor, which extrapolates the field measured at the phase centre of the antenna to a defined reference point. The separation to the EUT has to be specified and the reference point on the antenna is often at the tip.

The adjusted antenna factor is commonly given for 3 m and 10 m separation, measured from the marked reference position or the mechanical centre of the antenna. If these 3 m and 10 m antenna factors are used for measurements other than at 3 m and 10 m respectively, the uncertainty will be larger than if the free space antenna factors are used, with correction for phase centre. The latter can be used for any distance exceeding two wavelengths without the need to increase uncertainty.

$$AF_{REF} = AF_{FS} + 20 * Log_{10} \left[\frac{R + X_F - X_{REF}}{R} \right]$$

Where :-

 AF_{FS} = Measured free space antenna factor.

- AF_{REF} = Antenna factor referenced to defined point on LPDA.
- R = Separation from EUT to reference point on LPDA.
- X_F = Position of phase centre from LPDA tip.
- X_{REF} = Position of defined reference point from LPDA tip.

ANSI Height Scan Method

Version 03: amended on 30 March 2006

The ANSI C63.5[1] procedure describes how the antenna factor may be measured over a ground plane by a height scanning three antenna method. For each measurement pair, one antenna is at a fixed height and polarisation, and the other is height scanned. The receiver is set to record the maximum measured signal during the scan. In the three pairings each antenna is measured twice, and if the customer supplies two antennas then one of the antennas is always allocated to the height scanning mount, and the other to the fixed mount. An NPL antenna is used for the third antenna which height scans for one pair and is fixed for the other pair. If the customer supplies one antenna it will be placed at the fixed height.

Where standards call for an ANSI calibration (e.g. for NSA measurements), NPL recommends the use of free-space antenna factors for measurements at 10 m separation because they agree well with 10 m ANSI antenna factors. However, at 3 m separation the ANSI antenna factors differ significantly from the free-space values, and therefore only the ANSI antenna factors should be used in order to comply fully with the NSA method described in ANSI C63.4:1992 and CISPR 16-1:1999, [2].

References

- [1] ANSI C63.5-1998, American National Standard: Calibration of antennas used for radiation emission measurements in Electromagnetic Interference (EMI) control.
- [2] CISPR 16-1:1999, CISPR publication 16. Specification for radio disturbance and immunity measuring apparatus and methods, Part 1:1999 Apparatus, Central office of the IEC, 3 rue de Varembé, Geneva, Switzerland.