

NPL REPORT IEA 6

ESTIMATING THE PRICE ELASTICITY OF DEMAND FOR NPL'S SERVICES

MIKE KING, EUGENIO RENEDO

JULY 2020

ESTIMATING THE PRICE ELASTICITY OF DEMAND FOR NPL'S SERVICES

DR MIKE KING, EUGENIO RENEDO Analysis and Evaluation, Strategy Directorate

Abstract

This paper applies standard panel data analysis to a country-level panel dataset to estimate the price elasticity of demand for NPL's services. The data used consists of NPL internal administrative information, as well as data coming from reliable and widely used publicly available databases such as the World Bank's World Development Indicators database, or the CEPII database. The analysis finds that the price elasticity of demand for NPL's services is greater than one, meaning that these are elastic goods for which the quantity demanded will vary more than proportionally if the price changes. © NPL Management Limited, 2020

ISSN 2633-4194

https://doi.org/10.47120/npl.IEA6

National Physical Laboratory Hampton Road, Teddington, Middlesex, TW11 0LW

Extracts from this report may be reproduced provided the source is acknowledged and the extract is not taken out of context.

Approved on behalf of NPLML by Fiona Auty, Head of Government Relations

Contents

Lis	t of A	crony	yms					
Pre	eface							
Ex	ecutiv	e Su	Immary					
1	Intro	oduct	tion	1				
1	1.1	The	National Physical Laboratory	1				
1	1.2	The	public funding of NPL	2				
1	1.3	Esti	mating the price elasticity of demand	2				
2	The	ory .		4				
2	2.1	Key	variables in the market for high accuracy measurement services	4				
2	2.2	Nati	onal price level and elasticity of demand	6				
2	2.3	The	effect of distance in international trade	8				
2	2.4	Sea	rch costs and the home bias effect	9				
3	Data	a		12				
3	3.1	Vari	ables	12				
	3.1.	1	Quantity sold	13				
	3.1.	2	Metrology expertise of the home NMI	14				
	3.1.	3	Geographical proximity	15				
3	3.2	Data	a description	15				
3	3.3	Eco	nometric analysis	18				
3	3.4	Spe	cification	18				
	3.4.	1	Omitted variables bias	19				
	3.4.	2	Errors-in-variables	20				
	3.4.	3	Simultaneity	20				
	3.4.	4	Weighting of observations in the sample	20				
	3.4.	5	Selectivity	20				
3	3.5	Esti	mation	20				
	3.5.	1	Models tested and interpretation of the coefficients	21				
	3.5.	2	Model B1: 2-step Heckman selection model	22				
3	3.6	Pos	testimation	28				
4	Eco	nomi	ic Impact	33				
Z	4.1	Dire	ect benefit to paying customers and welfare for the UK	34				
2	4.2	The	effect of shifts in public funding received by NPL on welfare generated	36				
5	Con	clusi	ion	39				
6	6 References							
An	nex A	: Rol	bustness tests	41				
(Count	ries t	that do not purchase NPL's services regularly	41				
٦	The et	fect	of UK sales in the estimated elasticity of demand	44				

Outliers in the dependent variable	45
Specification of the CMC variable	46
Negative binomial regression	50
Split sample test	52
Income as the dependent variable	53
Annex B: Testing for endogeneity.	55
Annex C: Detailed summary statistics	57
Annex D: Stata outputs	59
Model A1	59
Model A2	63
Model A3	67
Model B1	71
Model C1	
Model C2	80
Model C3	82
Model C4	84
Model C5	86
Model D1	88
Model E1	90
Model F1	92
Model G1	95
Model H1	100
Model I1	101
Model J1	102
More information	103
Contact us	103

List of Acronyms

A4I	Analysis for Innovators
BIMP	The International Bureau of Weights and Measures (usually referred by its French initialism, Bureau International des Poids et Mesures) is an intergovernmental organisation through which member states act together on matters related to measurement science
CEPII	The Centre d'Etudes Prospectives et d'Informations Internationales is a leading French centre for research and expertise on the world economy.
CMC	Calibration and Measurement Capabilities
NMI	National Measurement Institute
NMS	National Measurement System
NPL	National Physical Laboratory
PPP	Purchasing Power Parity

Preface

This paper has been prepared by NPL's Analysis and Evaluation team to support the evidence this organisation is submitting for the 2020 Comprehensive Spending Review. This document is addressed to NPL's government owner: The Department for Business, Energy & Industrial Strategy. Its objective is to support the case NPL is presenting to justify the benefits of its public funding.

Executive Summary

This work applies a two-step Heckman selection model to a country-level panel dataset to estimate the price elasticity of demand for NPL's services. The data used consists of NPL internal invoicing information, as well as data on financial and demographic variables coming from reliable external sources – namely, the World Bank's World Development Indicators database, the *Centre d'Etudes Prospectives et d'Informations Internationales*, the Bureau of Weights and Measures, and the United Nations. The analysis finds that:

- The central estimate for the price elasticity of demand is 1.24 with a 95% confidence interval given by [1.09, 1.39].
- The four regressors in our model (the national price level, GDP per capita, distance and the CMC of the local NMI) turned out to be highly significant.

The rest of the paper is organised as follows. Section 1 provides context about NPL and outlines the rationale for its public funding; it also makes the case for estimating the price elasticity of demand using a country-level panel. Section 2 depicts the conceptual framework that synthetises the basic economic theory that explains NPL's international sales of services and identifies the variables of interest. Section 3 discusses the data and the variables used by showing some descriptive statistics. Section 4 provides a discussion of the model selection criteria and presents the estimation results. Section 5 shows how the results found in the econometric analysis can be used to estimate the welfare generated by NPL. Section 6 concludes.

1 Introduction

1.1 The National Physical Laboratory

NPL is a government owned and funded national laboratory that specialises in metrology (the science of measurement). It has over 380 state of the art laboratories and more than 800 scientists and engineers, as well as 200 co-supervised postgraduate students working in partnership with industry and academia. NPL's goal is to generate welfare for the UK's society. To that end, NPL carries out a multitude of activities across a wide range of areas – from quantum sensing and composite materials, to radiotherapy and emissions monitoring. In a nutshell, NPL's value chain can be summarised as follows. Firstly, NPL conducts fundamental research and performs international measurement comparisons that generate articles in peerreviewed scientific journals. This enables the development of cutting-edge measurement capabilities that support the creation of primary standards and state-of-the-art instrumentation. This expertise is then used to deliver calibration, testing, and training services to private businesses, hospitals, and universities. In addition, NPL works closely with Innovate UK to offer grant-funded collaborative R&D projects which involve many firms and research organisations.

NPL is part of the National Measurement System (NMS). The NMS is the technical and organisation infrastructure which ensures a consistent and internationally recognised basis for measurement in the UK. It has two central objectives:

- i. To enable individuals and organisations in the UK to make measurements competently and accurately and to demonstrate the validity of such measurement
- ii. To coordinate the UK's measurement system with the measurement systems of other countries.

The following figures give a clearer picture of NPL¹:

- 820 scientific and technical staff, as well as 280 administrative and managerial staff.
- A turnover of around £90m; £57m of that revenue in annual NMS² funding.
- Around 350 articles in peer reviewed journals each year; also, its scientists perform around £30m of public research work each year³.
- £13m of revenue from sales of measurement services. The R&D performed by NPL supports the introduction of new and improved calibration services, whose benefits fan-out down the calibration chain.
- Sells services to around 500 UK-based firms each year. And, the lab's scientists collaborate on R&D projects with around 200 UK-based firms each year.

¹ These figures are as of 2019. They differ to the ones used in this study which relates to the period 2010-2017.

² The National Measurement System (NMS) is a network of national laboratories and processes that provide measurement standards and calibration testing facilities in the UK. It maintains the measurement infrastructure, represents the position of UK measurement internationally and influences the development of standards.

³ Based on tax credits claims information.

NPL seeks to fulfill its objective of providing excellent metrology science to generate welfare for the UK. Hence, it is essential for NPL to know its impact. For that reason, NPL commissioned:

- A survey asking its users about the sales of new products that they feel would not have been achieved without the support of NPL and the other NMS laboratories. This survey found that users of the NMS laboratories believe that without NPL's support, their total annual sales of new products would decrease by at least £470M. Furthermore, they believe that about £2bn worth of new products might be at risk without this support. The self-reported nature of these estimates may make the exact size of these benefits doubtful, but it still provides evidence that such benefits exist.
- An independent econometric study by that found that companies supported by NPL grow more rapidly than unsupported comparators on average, supported companies have around 20 additional employees 2-3 years after working with NPL, when compared to a matched control group of similar unsupported ones.

1.2 The public funding of NPL

The economic rationale for the existence of a publicly funded organisation like NPL is that measurement R&D is subject to market failure. Indeed, the private investment needed to generate innovative measurement capabilities, will always be below the socially optimal level. This occurs because the benefits that measurement R&D generates will always spill over to firms who did not contribute, and this creates a strong incentive to free ride. The problem is particularly acute in the case of the R&D that the NPL undertakes, because advances in metrology tend to have applications across many sectors. It is this wide applicability that makes the development of these new tools and techniques particularly susceptible to free riding. Consequently, it is argued that measurement should really be seen as a public *infratechnology*, that is, a technology that provides tools and techniques which can be widely applied across a number of sectors to enable further innovation. In short, NPL and its partners' scientific work generates a pool of knowledge that can be accessed and used by any firm. This fact carries a strong incentive to free ride, and thus, there is a clear need for public funding to complement measurement R&D funded through private spending.

Another key argument for publicly supporting a specialist laboratory like NPL is that the kind of metrology research it conducts requires the setting up of large facilities. In such cases, the fixed costs could be so high that they exceed the private gains to any one company. Therefore, the facility would never be developed on the basis of individual private funds alone, despite the total benefits from the capability outweighing the cost.

Lastly, there is an efficiency justification that supports the idea of a publicly funded metrology laboratory like NPL. Indeed, the high cost and difficulty of maintaining primary standards makes the calibration chain very efficient. NPL supplies a costly high-level calibration service to a commercial laboratory, which then calibrates the instruments of a vast number of users without the need for the calibration laboratory to establish their own primary standard.

1.3 Estimating the price elasticity of demand

Knowing the responsiveness of demand to changes in prices is essential for any business to assess its potential for revenue growth. Moreover, since NPL is a publicly funded organisation, a reliable estimate of the price elasticity of demand constitutes the cornerstone for further work aimed to predict the effect of increasing public support.

The analysis outlined in this paper makes use of a country-level panel dataset involving more than 100 countries over a period of 17 years (2001-2017) to estimate the price elasticity of

demand for NPL's measurement services. There are several reasons why this country-level approach was chosen to estimate the price elasticity of demand:

- Over half of NPL's sales are made overseas. This means that a fairly significant fraction of NPL's income is subject to international trade forces.
- Analyses of the market for high accuracy measurement services reveal that relative prices with respect to other NMIs have experienced hardly no variation over the last two decades. This means that any trend in prices is common to almost every NMI, and that price-driven substitution effects must have been almost insignificant. On the other hand, we know that, in an international trade context, the perceived price by consumers is different from the selling price. Indeed, the perceived price is also influenced by the consumer's local purchasing power parity and the exchange rates between the local and the selling currency. Thus, variations in inflation and exchange rates can be exploited to measure the price elasticity of demand for NPL's services.

2 Theory

This section outlines the conceptual framework that synthetises the basic economic theory that explains NPL's international sales of services. To that end, the global market for high accuracy measurement services is described first. Next, a few simple micromodels are presented. These capture the intuition behind the role played by the various variables of interest in the subsequent econometric analysis. Hence, the objective of these models is not to provide a comprehensive analytical framework to be econometrically tested, but to show the mechanisms whereby several key variables affect international sales of measurement services.

2.1 Key variables in the market for high accuracy measurement services

NPL and other NMIs offer high quality measurement services. These vary from one NMI to another. In particular, the accuracy delivered depends on how developed the measurement infrastructure is in each country. Although all users in the market value accuracy (since it ultimately constitutes valuable information⁴), it is not equally appreciated by all of them; for instance, a manufacturer of aircraft engines is more likely to require greater accuracy than a mass producer of chocolate bars.

Another important aspect of the market for high accuracy measurement services is the time it takes for an NMI to provide the service. Indeed, particularly in the case of calibration services, the assets to be calibrated are extremely valuable. This implies that, while waiting to be being calibrated, the instruments do not generate value for their owners. Thus, queues have a substantial effect on consumption patterns.

On the other hand, the global market of high accuracy measurement services is not frictionless – it is subject to significant transaction costs. Particularly two elements play a major role: geographical proximity and imperfect information. The former entails that transport costs make services from distant NMIs less attractive; the latter causes the existence of search costs, that is, the time and money spent by users who research the market to find a service that satisfies their needs.

Therefore, based on this theoretical framework, we can think of a worldwide, vertically differentiated, spatial market for high accuracy measurement services. Total demand in this market is assumed to depend mainly on:

- The price of the service: Like most goods, high accuracy measurement services are affected by the law of the demand which states that conditional on all else being equal, as the price of a good increases, the quantity demanded decreases. However, we are dealing with a multi-country, multi-currency, international trade framework; thus, exchange rates and monetary effects play a substantial role. The perceived price is influenced by the user's local purchasing power and the exchange rate.
- The time to delivery: Since measurement is at the heart of many production processes, the longer it takes for the customer to get the service, the higher the opportunity cost.
- The geographical proximity between the NMI and the user: Transport costs disincentivise sales abroad the further the distance, the higher the transportation and

⁴ Accurate measurement is often crucial to R&D activities to develop new products (and therefore the possibility of increasing market power and commanding a price premium), or new processes that typically entail a cost-saving improvement to the production process, which leads to a greater efficiency and an increase in the profit margin.

the insurance cost. Moreover, highly accurate measurement instruments are very sensitive, and their specification may deviate due to transportation. These two facts create a bias towards consumption from closer NMIs.

 The variety of services provided by the home NMI: The market of high accuracy measurement services is a very specialised market. Hence, users face substantial search costs. Rational consumers will continue to search for a better product until the marginal cost of searching exceeds the marginal benefit. Thus, users will be more inclined to buy services from their local NMI (provided that they can find a service that meets their needs), rather than a distant foreign NMI. This comes as no surprise, since search costs are lower at the local level because there are fewer barriers to knowing the NMI's portfolio (e.g. common language, the possibility to visit the facilities...).

The framework outlined above synthetises the main forces driving the decision of users worldwide regarding the purchase of high accuracy measurement services from NMIs. However, one typical element affecting demand is missing: real income. This assumption implies that the income elasticity of high accuracy measurement services is thought to be close to zero. The argument for this is that the quantity demanded of these services by any specific firm, tends to be constant over time. In other words, high accuracy measurement services are a basic need for most of the users. Indeed, there are effectively two reasons for demanding these services: either because it is a requirement of the production process or because it supports R&D activities. The former is consistent with the zero-income elasticity of demand assumption. The customer is forced to acquire the services of an NMI instead of those of a commercial laboratory because that level of accuracy is fundamental to run its operations. The latter is not as straightforward. Although the empirical evidence shows that R&D activities are highly procyclical, and therefore linked to income growth, it could be argued that research spending comprises a very small fraction of the company's resources. Moreover, measurement is just one of the activities within an R&D project. Hence, measurement R&D spending must be negligible compare to measurement spending in productive related activities. Consequently, the zero-income elasticity of demand is considered a valid approximation.

In addition, the forces that drive demand may not be the same when we aggregate the units of analysis. In other words, it is not the same to analyse the factors that determine the demand of a single user, than to study those at the country level. Notably, the number of companies that need high accuracy measurement services within a country, must be a good predictor of the quantity sold. In section 4 we will control for this by including GPD per capita as a timevarying covariate. The intuition behind this is twofold. On the one hand, the richer a country is, the more sophisticated tends to be its economy, and the higher the demand for high accuracy services. On the other hand, the number of companies fluctuates with income growth, *i.e.* the number of companies is certainly linked to the business cycle. Arguably, the first aspect (the relationship between economic sophistication and the need for high accuracy measurement services) is related to GDP, whereas the second one (the link between the volume of this kind of services sold and the number of companies), pertains to oscillations around the mean value of GDP per capita. In any case, both situations are addressed by adding the GPD per capita time-varying covariate in our regression model. Moreover, as a byproduct of adding GDP per capita in the regression model, we are also accounting for any income effect, should our assumption of zero-income elasticity not be completely valid.

Lastly, note that queue times are impossible to account for in our analysis. Simply this information is not publicly available, since this consists of internal information of each NMI. Section 4.1 deals with the econometric issues around the lack of data for this relevant variable and details the assumptions made to work around it.

The rest of the section provides further theoretical basis to understand the relationship of sales with the rest of the magnitudes identified as drivers of the demand for high accuracy

measurement services. A series of micromodels are presented in order to show the effect of the national price level, the distance, and the services provided by the local NMI on the international market of high accuracy measurement services.

2.2 National price level and elasticity of demand

Perceived price is key to understand consumption patterns in international trade; thus, international trade is driven by purchasing power parities and the exchange rates. A concise and convenient way to express the effect of these variables is the ratio between the two – which is commonly known as the national price level. The national price level allows us to compare the cost of the same bundle of goods across different countries.

We define the national price level as:

$$L = \frac{S}{r} = \frac{p'_{h}/p'}{r}$$
(2.1)

where *S* is the purchasing power parity relative to the UK, that is, the price ratio of the same basket of goods in local currency units of the buyer's *home* country, p'_h , and in sterling pounds in the UK, p'; *r* is the exchange rate expressed in local currency units per pound – the superscript ' in both pricing variables in equation 2.1 symbolise that both relate to the *numeraire good*, i.e. the representative basket of goods typically bought by the firm; this will play a role in the model below. Unsurprisingly, if the buyer's home country is in fact the UK, then *L* is equal to one.

From the definition of the national price level it follows that increases in the national price level can be driven either by a higher domestic inflation or a stronger local currency unit. Hence, a positive relationship between an NMI's international sales and the national price level is expected. To show this, the micromodel below is developed to find the analytical expressions that links the quantity sold of high accuracy measurement services and the national price level.

A rational agent is only interested in changes in the perceived price, no matter whether they come from fluctuations in selling prices or in the exchange rates. To show this, let's start by considering the payoff function⁵ of the typical user of high accuracy measurement services⁶. Naturally, the money spent on measurement services is just a tiny fraction of a company's total spending. Hence, the following quasi-linear payoff function serves as a good first approximation of the value obtained by the user:

$$\Pi = cQ^{\theta} + X \tag{2.2}$$

⁵ This implicitly states the productive nature of high-accuracy measurement services which provide valuable information that support the development of new products or processes which ultimately yield higher profits.

⁶ Without any loss of generality, for the sake of simplicity, in this model we consider the choice faced by a rational agent when purchasing measurement services either in their local market or in the UK. Note that the choice of the UK is arbitrary, but irrelevant for the validity of the model. The reason why we set the choice between the UK and the local country, is because it simplifies the explanation of the model and it links with the later empirical analysis in this paper, in which this model is used to estimate the price elasticity of demand for NPL's measurement services.

Where *c* and θ are positive constants such that c > 0 and $0 < \theta < 1$, *Q* is the quantity demanded of high accuracy measurement services⁷, and *X* is the number of units of the numeraire good. This functional form is considered suitable to model the firm's payoff function because spending on measurement services is typically quite small compare to the rest of spending by the firm. Therefore, the effect on the marginal utility of money is negligible. Moreover, another key property of the quasilinear function, is that the Marshallian demand does not depend on income, which is consistent with our previous assumption of zero income elasticity.

The agent's spending limit is given by the budget constraint:

$$M = rpQ + p'_h X \tag{2.3}$$

Where *M* is the income of the agent, *r* is the exchange rate, *p* is the market price of the high accuracy measurement service in the UK and p'_h is the price of the numeraire in the home country⁸. Note that this specification means that *M* and p'_h are measured in the customer's country currency, and *p* is expressed in sterling pounds.

If we substitute 2.3 in 2.2 and maximize the resulting objective function, we obtain the Marshallian demand function:

$$Q^* = \left(\frac{c\theta p_h'}{rp}\right)^{\frac{1}{1-\theta}}$$
(2.4)

Now, this equation can be expressed in terms of the national price level and UK prices using equation 2.1:

$$Q^* = \left(\frac{c\theta p'L}{p}\right)^{\frac{1}{1-\theta}} = \left(\frac{c\theta}{\mathcal{P}}\right)^{\frac{1}{1-\theta}}$$
(2.5)

Where $\mathcal{P} = p/p'L = rp/p'_h$ is the perceived price by the customer – i.e. the number of units of the numeraire good that the firm can buy in the home country for the amount it would spend on one unit of the measurement service in the UK.

If we take the logarithms at both sides of equation 2.5, we get:

$$\ln Q = A - \frac{1}{1 - \theta} \ln \mathcal{P}$$
(2.6)

Where $A = \frac{1}{1-\theta} \ln c\theta$ is constant.

We can derive both sides of equation 2.6 to get:

⁷ Implicitly, the heterogeneous nature of measurement services is being ignored here. However, for the purposes of the model and the empirical analysis later on, we assume that in effect what all NMIs sell is the time of highly trained scientists and engineers in metrology. More on this on section 3.1.

⁸ The price notation is such that subscripts denote if the price is referred to the UK (no subscript) or the buyer's home country (subscript h), and the superscripts represent if the price is related to the measurement service (no superscript) or to the numeraire good (superscript ')

$$\frac{\Delta Q}{Q} = -\frac{1}{1-\theta} \frac{\Delta \mathcal{P}}{\mathcal{P}}$$
(2.7)

Where the percentage change in the perceived price is given by:

$$\frac{\Delta \mathcal{P}}{\mathcal{P}} = \frac{\Delta p}{p} - \frac{\Delta p'}{p'} - \frac{\Delta L}{L}$$
(2.8)

Now, NPL's measurement services prices have roughly moved directly in relation to the UK general price level (i.e. the price of the numeraire good). Consequently, both percentage changes in prices in equation 2.8 cancel each other out and we are left with the percentage change in the national price level. In other words, although by using the national price level as a proxy for the perceived price we might be suffering from measurement error, this is likely to be quite small because relative changes in the perceived price are very similar to relative changes in the national price level

Lastly, if we expand the equation 2.6 using the definition of the perceived price \mathcal{P} , we obtain:

$$\ln Q = A - \frac{1}{1-\theta} \ln p + \frac{1}{1-\theta} \ln p' + \frac{1}{1-\theta} \ln L$$
(2.9)

Therefore, this model yields two important conclusions:

- The price elasticity of demand for NPL's measurement services is equivalent in magnitude (but opposite sign) to the elasticity with respect to the national price level.
- Relative changes in the perceived price are mostly driven by relative changes in the national price level because the price of measurement services have approximately been in sync with the general price level.

These two facts will be exploited in the empirical analysis in section 4.

2.3 The effect of distance in international trade

The gravity model of trade has been very successful when ordering the observed variation in economic interaction across space in trade flows. The good fit and the tight clustering of coefficient estimates in the empirical literature, suggest that some underlying economic law must be at work. Although the driving forces of international trade have been a vivid debate since the emergence of Ricardo's comparative advantage theory, the gravity model has often been used to test hypotheses rooted in many different economic theories.

Normally, in econometric applications the gravity model of trade is specified as follows:

$$X_{ij} = A \cdot \frac{E_i^{\gamma_1} \cdot E_j^{\gamma_2}}{D_{ij}^{\gamma_3}} \cdot \vartheta_{ij}$$
(2.10)

where X_{ij} represents the volume of trade from country *i* to country *j*, *A* is a constant, E_i and E_j represent some proxy variable of the economic size of the countries, typically their gross domestic products, D_{ij} denotes the distance between the two countries, and ϑ_{ij} represents an error term with mean 1.

The most common approach to estimate equation 2.10 is to take the logarithm of both sides to construct a log-log model that can be estimated by OLS:

$$\ln X_{ij} = \gamma_0 + \gamma_1 \ln E_i + \gamma_2 \ln E_j + \gamma_3 \ln D_{ij} + \eta_{ij}$$
(2.11)

where $\gamma_0 = \log A$ and the negative sign before γ_3 has been included in the coefficient.

If we consider the worldwide trade pattern of just one country, the model becomes simpler because all the observations are referred to that country (effectively, we drop one of the indexes in equation 2.11, so it becomes):

$$\ln X_i = \beta_0 + \beta_1 \ln E_i + \beta_2 \ln D_i + \varepsilon_{ij}$$
(2.12)

Where X_i represents the volume of trade from country *i* to the country of reference, D_i denotes the distance between the two countries, and $\beta_0 = \gamma_0 + \ln E$ with *E* representing the proxy variable of the economic size of the country analysed.

2.4 Search costs and the home bias effect

Most markets in the economy are far from being commoditised. This is especially true for the market of high accuracy measurement services, where the prevalence of product (service) differentiation is caused by an ample heterogeneity in user preferences and the wide range of measurement capabilities of the different NMIs. This differentiation provides NMIs with profitable opportunities and makes them face important strategic decisions in terms of how and when specialise in certain areas of metrology. The acute differentiation in the market also leads to search frictions for users, since they have to consider not just price, but a large number of characteristics of the various services on offer and how these fit their needs. Hence, users incur a cost of resources (namely money and time) when having to find and compare the different options at their disposal. Thus, the decision to purchase a specific service or to keep researching the market is mostly determined by two factors: search costs and the suitability of the options already considered.

The behaviour of the user of high accuracy measurement services can be rationalised by considering the following setup. Let's assume a differentiated market of high accuracy measurement services where users have different tastes (horizontal differentiation⁹). In the market, any potential buyer knows all the NMIs, but does not know the characteristics of the services they offer (for the sake of simplicity, price is considered as one of the elements pondered by the user). Users can gather information by sequentially and randomly sampling the NMIs in the market (the assumption of random search suggests that they know little about the market before committing to search; thus, it is consistent with the assumption that users know all the NMIs in the market, but they do not know the characteristics of the services). The search process has associated a cost (typically it consumes time and resources).

⁹ Horizontal differentiation refers to distinctions in products that cannot be easily evaluated in terms of quality. This stands in contrast to vertical differentiation, where the distinctions between products are objectively measurable and are based in the products' respective level of quality. Therefore, in a horizontally-differentiated market, in general consumers will buy different products even if these have the same price, since consumption decisions are motivated by individual preferences. In the case of vertically-differentiated markets all consumers agree on the preference order of goods in the market. Hence, consumption decisions are determined (fundamentally) by their budget constraints.

knowing the characteristics of the services of the first NMI comes at no cost. This assumption models the fact that it is easier to know what the home NMI offers. Lastly, at any point in the search process, users can always fall back and buy the variety of any of the NMIs already sampled at no additional cost.

Let's start by considering the net present value of future profits¹⁰ that a user of high accuracy measurement services can obtain thanks to those. The objective function of a user j is given by:

$$\Pi_j(x_0; i) = x_0 + v_i \tag{2.13}$$

Where x_0 is the quantity of the numeraire good¹¹ the user *j* has, and v_i is the value the user gives to a unit of brand *i*.

Given that users are assumed to maximise the net present value of profits, they will try to find the variety for which v_i is maximal. In other words, they will try to find the service of the NMI that best suits them. In addition, in order to account for different tastes within users, it is assumed that the valuations v_i are realisations of an independent and identically distributed random variable with distribution function *G*. Without loss of generality, we can assume G is given by a continuous uniform distribution (rectangular distribution) with distribution support [0,1].

A rational user will stop searching for another service when the marginal cost of searching exceeds the marginal benefit. Let's consider a buyer who has already sampled some NMIs and attaches a valuation $v' \in [0,1]$ to the best match found. The marginal benefit of keep searching (i.e. sample one more NMI) is given by the expected benefit of doing so minus the valuation of the best match up until that point:

$$b = \mathbf{E}[v|v > v'] \cdot P(v > v') + a \cdot P(v < a) - a = \int_{v'}^{1} (v - v') dv$$

= $\frac{1}{2} (v' - 1)^2$ (2.14)

The marginal cost of one more sample is given by the search cost, *s*. Hence, the user will stop searching when the marginal benefit given by 2.14 is equal to the search cost:

$$\frac{1}{2}(v^* - 1)^2 = s \Leftrightarrow v^* = 1 - \sqrt{2s}$$
 (2.15)

Therefore, the user will stop searching when he finds the service of an NMI that provides a value equal to or greater than v^* . Note that this means that the higher the valuation the user assigns to the initial NMI (remember that the information about this first NMI comes at no cost), the less likely is the participation in the international market. In other words, the better the local

¹⁰ As in section 2.1, the fact that the objective function for the representative agent is the net present value of future profits suggests the productive nature of high-accuracy measurement services.

¹¹ The inclusion of the numeraire good simply seeks to resemble the linear functional form of consumer's utility that is most commonly used in the economic literature. The numeraire does not play any role in the model. It only denotes the fact that a separate and additive relationship is assumed between all the goods that the user can acquire. Effectively, this implies that the user looks for the variety that best satisfies his needs as a standalone service, without considering any relationship of complementarity or substitution with the rest of the goods.

NMI meets the needs of the user, the less likely it is that the user will decide to survey the portfolio of foreign NMIs.

3 Data

The following section presents the data used to construct the variables used in the econometric analysis. First the data sources and the variables are presented. Then the methodological issues around those variables are addressed.

3.1 Variables

This study uses NPL's internal managerial data as well as data coming from several external sources. Table 1 summarises the variables and the sources of data used in the econometric analysis:

Variable	Units	Symbol	Source	Description	Magnitude
Number of invoices normalised by the population of the country	invoices per inhabitant	1	NPL	Yearly number of invoices issued to all users in a country divided by the population of that country.	Quantity sold
National price level	. (index)	PL		Relative national price with respect to the UK.	Price
GDP per capita	£	GDP	World Bank	Market value of all the final goods and services produced in a year per person in millions of pounds.	Income
Distance	km	D	CEPII	Distance in km between London and the most populate city in the user's country.	Geographical proximity
Calibration and measurement capabilities	. (index 0-100)	СМС	BIPM	Number of calibration and measurement capabilities of the home NMI of each country.	Metrology expertise
Population	inhabitants	POP	United Nations	Population in millions of people at 1 July 2019.	Population

Table 1: Variables, data sources and magnitudes.

There are several methodological difficulties when it comes to associating suitable proxies with the magnitudes identified in Table 1. The rest of this subsection analyses those issues and discusses potential solutions.

3.1.1 Quantity sold

Although NPL's portfolio is quite varied, roughly speaking it can be considered to offer one unique good: the time and the expertise of highly trained scientists and engineers. In that regard, NPL can be thought to operate much like a professional services firm which sells the time and the knowledge of its workforce. However, in other aspects NPL is far from resembling a typical professional services firm. In particular, there is a fundamental difference when comparing both business models - say between a law firm and NPL. For the former, its core business consists of one sole activity: representing its clients in court and providing them with legal advice. For NPL it is not as straightforward, because NPL's staff need to maintain the measurement capabilities required to deliver high accuracy measurement services and engage in cutting-edge collaborative R&D projects; and this task requires a significant portion of their time. Hence, unlike a law firm, NPL must preserve a knowledge stock that depreciates over time in order to meet the requirements of its users. To do so, NPL's staff carry out a wide variety of activities. These include conducting international key comparisons, participating in proficiency testing schemes, maintaining UKAS accreditation for calibration and testing services, running audits, contributing to standards and protocols, and performing research that generates articles in peer-reviewed scientific journals. This knowledge is then used to meet the needs of users. In this sense, NPL could be considered to resemble an orchestra for which the day of the concert is only the tip of an iceberg of constant work over the months and years. The show would not be possible without the previous effort put into practice. Similarly, for NPL both activities (the maintenance of capabilities and the delivery of services) are deeply entwined. Thus, it is not easy to discriminate the time spent by the staff on one activity or the other.

On top of that, NPL's strategic managerial approach focuses on achieving specific revenue targets for each scientific group. The way this target is achieved varies from one group to another, and over time. This means that the decisions taken by the group leader on how to distribute the time of scientists and engineers in the group may be influenced by many factors, such as long-term perspectives or the idiosyncrasy of the area of metrology. Effectively, this means that NPL does not have timecard data broken down by customer. Therefore, any *expost* consideration on the distribution of the time of scientists and engineers would not have enough comparability between groups and will lack temporal consistency.

Since the ideal variable to proxy the quantity sold (the time distribution of the scientific staff among jobs) is not available, some other proxy is needed. There are two other alternatives available to us: the number of invoices issued, and the income generated¹². Undoubtedly, both must hold a positive relationship with the time spent by scientific staff. However, the number of invoices variable is the preferred option. This is because income is related to quantity sold through price ($R = p \cdot Q$); and prices vary substantially between jobs despite the service delivered being the same. This is because NPL's prices are set on a cost-plus basis¹³. This means that, although the services provided are fairly standardised, these are not always delivered by technical staff of the same grade – i.e. depending on availability of the workforce sometimes the service may be delivered by some more senior scientists or engineers, and this effectively translates into prices. Thus, income does not relate well to time spent on each job.

Nevertheless, this is a fundamental choice of the analysis that requires further discussion. To that end, a robustness check has been carried out in Annex A. The test consists of executing the same model using income as the dependent variable instead of the number of invoices. We conclude that both models produce very similar estimates; however, the preferred

¹² Note that in reality any choice for the dependent variable is normalised by population. This ensures comparability between countries.

¹³ For most services provided by NPL there is no competitive market in the UK; which is why NPL deliver those services. This means that there is no competitive process driving prices and therefore, NPL set prices on a cost-plus basis.

specification is the one that considers the number of invoices as the dependent variable because we have the aforementioned reasons to believe that these estimates are slightly more accurate.

3.1.2 Metrology expertise of the home NMI

Another methodological issue revolves around the way to model the CMCs of a country. BIPM reports a comprehensive table that details the number of CMCs by country broken down into different metrology areas. These areas encompass many different services depending on the physical quantities they measure; for example, *Acoustics, Ultrasound and Vibration, Photometry and Radiometry* or *Chemistry*. There are mainly two possibilities to assess the CMCs of an NMI based on the information reported in the table. Both have been tested and compared.

The first one adopts a simple probabilistic approach to account for the CMCs of NMIs. The intuition is straightforward: the more measurement services an NMI offers, the more likely it is for a company to find a service within the NMI's portfolio that meets it needs. This assumption has a major weakness though. Undoubtedly, some metrology areas are more in demand than others. Moreover, even within a specific area of metrology, some services are more in demand than others. Hence a probabilistic measure that weights all services equally is not completely accurate. On the other hand, this approach implicitly assumes that companies do not demand services from different areas at the same time. Although this may be true for small businesses, large companies may demand numerous services of different types from the same NMI. They do so both for getting better prices, and for technical reasons (the services may be entwined or depend of one another). Again, this means that the probabilistic approach to model CMCs is not entirely accurate. Nonetheless, keeping those conceptual concerns aside, there is also another methodological issue to overcome with this approach. Since the probability of matching - i.e. the probability that an NMI can meet the user's needs - is defined as the number services offered by an NMI over the total number of services offered worldwide, it is crucial to know the total number of distinct services offered by all NMIs together. This cannot be inferred from the table provided by BIPM, since the services are not uniquely identified; only the total number of CMCs by area of metrology is reported. In order to approximate this, a simple method has been used. For each of the nine metrology areas, the country that offers the greatest number of services has been identified, and this figure has been assumed to be the total number of services available in that area. The idea behind this reasoning is that if a country is the world's largest specialist in an area of metrology, its portfolio must be quite comprehensive. In other words, we are assuming that there are not too many services in that area that the NMI does not offer. Therefore, both conceptual and methodological difficulties show that this probabilistic measure has some disadvantages in order for it to be used as proxy of the CMCs of an NMI. In particular, NPL's internal sales data suggests that some users demand services from different scientific groups (or equivalently, they demand services from different areas of metrology). To what extent this is in fact relevant to the econometric results must be determined. That is why an alternative method that accounts for the versatility of an NMI (i.e. how varied its portfolio is) is tested and compared.

For that matter, the geometric mean of the number of CMCs in the nine areas of metrology reported in the table is also proposed as a convenient proxy for the CMCs of an NMI. This alternative measure constitutes a comparable measure that represents the metrology expertise and scope of the NMI's portfolio. It consists of a continuous dimensionless index that assesses the development of the NMI in all areas equally and assigns larger values to the institutes that offer greater variety of services, hence accounting for taste variety among users, who obtain a greater benefit from those NMIs that provide them with more complete service bundles.

Both measures of CMCs have been tested, yielding very similar (almost equivalent) estimation results. The first approach is the preferred one though; basically, because it allows for better

interpretation of the estimated coefficients. In any case, the estimation results with respect the second approach based in the geometric mean is included in Annex A.

3.1.3 Geographical proximity

For each country in the dataset, geographical proximity is measured as the distance in kilometres between London and the most populated city in the purchasing country. However, around half of NPL's income comes from the UK. Hence, we need a measure of the average distance between NPL and users within the UK; here, we follow the commonly used guidelines by that define the internal distance as:

$$d = 0.67\sqrt{A/\pi} \tag{3.1}$$

where *A* is the area of the country.

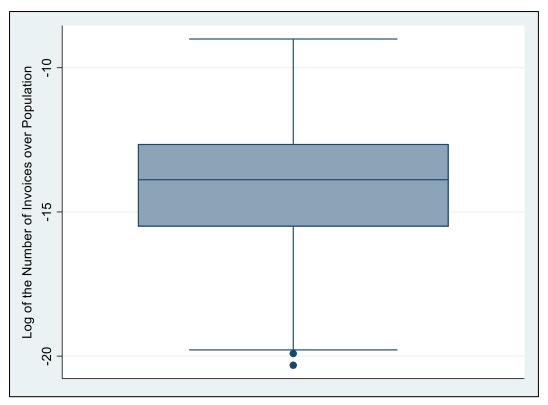
3.2 Data description

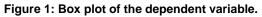
The objective of this analysis is to measure the price elasticity of demand. For that matter, it is convenient to work with the logarithms of the variables above. Table 2 shows some basic descriptive statistics of the variables of interest. (Variables in levels are abbreviated in capital letters; variables in logarithmic form are lowercased).

Variable	Mean	Std. Dev	Relative Std. Dev	within variation	Skewness	Kurtosis	Min	Max
1	2.4E-06	8.0E-06	3.3	0.5	6.2	46.3	0.0	8.6E-05
PL	0.5	0.3	0.5	0.3	0.8	2.8	0.1	1.4
GDP	1.5E+04	1.4E+04	0.9	0.4	1.7	7.0	4.1E+02	9.7E+04
CMC	11.6	16.7	1.4	0.0	2.3	8.0	0.0	77.6
D	5167.5	3933.0	0.8	0.0	0.8	3.5	185.8	19147.1
POP	5.9E+07	1.8E+08	3.0	0.0	6.0	40.8	3.3E+04	1.3E+09
i	-14.1	2.1	0.2	0.3	-0.4	2.7	-20.3	-9.4
pl	-0.7	0.5	0.7	0.4	0.0	2.3	-2.1	0.4
gdp	9.2	1.1	0.1	0.3	-0.6	2.9	6.0	11.5
d	8.2	1.0	0.1	0.0	-0.7	2.9	5.2	9.9
рор	16.3	1.9	0.1	0.0	-0.4	3.9	10.4	21.0

Table 2: Summarised descriptive statistics.

Table 2 provides some insight to understand the dataset¹⁴. To begin with, the outcome variable $I_{i,t}$ (the number of invoices issued to a country normalised by the population of the country) is not defined for over 40% of the panel. This is because small and/or less developed countries lack enough companies that need high accuracy measurement services. This leads to NPL sales to those countries being rare events. Therefore, the number of invoices is zero for a


¹⁴ Annex C contains a more detailed table with summary statistics for all the variables included in **Table 2**.


significant part of the panel, causing a substantial incidental truncation of the outcome variable once logarithms are taken. This has important consequences on the statistical techniques needed to analyse the data properly; section 4.1 analyses this matter in depth, and proposes a two-step Heckman model as the preferred way to account for any selection bias that would come from this structure of the panel. Moreover, Annex A analyses the effect of removing countries with too few observations from the sample. The logic behind checking the robustness of the results when trimming these observations, is that those countries might have fundamentally different needs than the rest of the sample. These unobserved characteristics could have a misleading effect when estimating the real price elasticity. As shown in this annex the effect is not considerable.

Another key feature of the dataset is the distinction between *within* and *between* variation. These measure how far are the variables of interest spread out from their average value, across countries and over time respectively. Obviously, since distance (D) is a time-unvarying variable, it will not show any within variation. In addition, although the measurement capabilities of the home NMI (CMC) and the population of the country (POP) do vary with time, they barely do so. For that reason, for both variables only the 2019 figures have been considered. Therefore, these two will not show any within variation either.

As expected, the time-variant variables show more variation from country to country than over time for the same unit. Nonetheless, the national price level presents significant variation over time. This is an important requirement for the analysis proposed to work. Note that a basic element of the analysis, and so one of the reasons why overseas sales are used to estimate the price elasticity, is that measurement services relative prices have stayed fairly constant over the period analysed. Hence, we require enough variation in relative national price levels to estimate the price elasticity of NPL's services.

Finally, it is important to assess if there are outliers in the panel and whether they affect the estimates or not:

The dependent variable shows a neat log-normal distribution. In any case, the identified outliers were dropped applying the standard approach by . However, the effect of these outliers in the estimation results is negligible. This is shown in Annex A.

3.3 Econometric analysis

The following section constitutes the nucleus of the analysis carried out in this paper. Firstly, the model of the data-generating process is presented, and the potential sources of bias are discussed. Secondly, the estimation results for the models proposed are presented; the models differ on the dynamics considered and whether the Heckman correction is applied or not – the goal is to build from simple to complex to allow the reader to understand the line of reasoning followed. Lastly, the postestimation test are run to find the preferred setup.

3.4 Specification

The theoretical population model to be analysed is:

$$\log I_{i,t} = \beta_0 + \beta_1 \log PL_{i,t} + \beta_2 \log GDP_{i,t} + \beta_3 CMC_i + \beta_4 \log D_i + \beta_5 \log POP_i + \gamma_t Y_t + \varepsilon_{i,t}$$
(4.1)

where $I_{i,t}$ is the number of invoices issued to country *i* in year *t* normalised by the population of the country, $PL_{i,t}$ is the national price level, $GDP_{i,t}$ is the gross domestic product per capita, CMC_i is a continuous index that rates the measurement capabilities of the country, D_i is the distance between the country and the UK, POP_i is the population of the country, Y_t is a year dummy variable, and $\varepsilon_{i,t}$ is the error term which is assumed to be independently and identically distributed as a normal distribution with mean of 0 and finite variance.

It could be argued that users in different countries might have fundamentally different needs. However, the proposed specification given by equation 4.1 does not contain an intercept which is dependent on the unit of analysis – a fixed effect that reflects the unobserved heterogeneity across countries. The reason for that is that we lack the statistical power as to assign each country its own intercept. This poses the question of whether we can use the elasticity found from this international dataset to characterise demand by UK users. We argue that the majority of sales occur in comparable countries such as OECD countries (94.8%) or EEA countries ¹⁵ (89.4%), and thus, there is reason to believe that ignoring the fixed effect is not crucial for the purpose of the analysis.

On the other hand, the inclusion of the year dummy variable must be discussed. This variable allows us to control for the effect of year-specific events.

Another important element worth highlighting is the fact that the variable that controls for the measurement capabilities of the home NMI is introduced in the model in level rather than logged. This makes the interpretation of the coefficient much more straightforward. Since this variable is a probabilistic measure of the local NMI offering a service that meets the user needs (as detailed in section 3.1), the coefficient estimate should be interpreted as the effect on sales (expected to be negative) of an increase of 1% on such probability. In any case, the correctness of the specification in level rather than logged has been tested using the approach by . All the detail can be found in Annex A.

Lastly, note that the ultimate goal of the model given by equation 4.1 is to estimate the price elasticity β_1 . To ensure that the estimate we get from this specification is close to the real parameter, any potential source of bias needs to be accounted for. The rest of this subsection analyses systematically all potential issues that could be biasing the estimation results.

¹⁵ European Economic Area.

3.4.1 Omitted variables bias

The specification defined by equation 4.1 clearly does not include all the variables that are responsible for all the variation in the dependent variable. By definition, the effect of these omitted variables is included in the error term. Consequently, the estimations provided by our model will not be biased, as long as the error term is not correlated with the regressors.

One relevant omitted variable identified in section 2 which is not explicitly included as a covariate, is delivery time. Indeed, international sales of high accuracy measurement services are influenced (presumably to a large extent) by the time that NMIs take to deliver their services. For instance, we can think of how VSL – the Netherlands' NMI – and NPL compete for an Australian customer. From the user's perspective, both are distant NMIs offering similar services and prices; hence, it is plausible that the decision between the two is mainly determined by how much time it would take for the customer to get the service.

So, the question is whether delivery times – or any other omitted variable for that matter – is correlated to our regressors. In particular, we are interested in knowing whether the national price level is endogenous, since the ultimate goal of the analysis is to determine the price elasticity of demand for NPL's services.

Endogeneity could be originated in either of the two dimensions of our panel. On the one hand, a certain degree of unobserved time-independent heterogeneity among the countries in our sample is expected. Unsurprisingly, customers from the US are likely to show different needs than Nigerian businesses. However, whether this fixed effect is sufficiently correlated with our regressors as to significantly bias our estimations is another matter. As it will be shown in section 4.3 this fixed effect is negligible; thus, the proposed approach of pooling all the observations ignoring any country-specific effect is deemed to be quite accurate.

Alternatively, endogeneity could be the result of the dynamics of the generating process. In other words, NPL's sales to other countries may depend not only on the contemporary values of the variables that determine these sales, but on their recent history too. This persistence can be caused by the explanatory variables, the unobservables, or both (i.e. we could introduce in our specification lagged regressors, past realisations of the residuals or lagged values of the dependent variable which effectively encompasses both). In our case, it is fair to assume that the inertia is just in the error term; that is, the dynamic persistence comes from the unobservables. There are two main arguments to motivate this assumption. Firstly, sales are supposed to react quickly to the time-varying regressors in our specification. That is, in most markets, a consumer is assumed to react very quickly to variations in relative prices and changes in their budget constraint. Secondly, NPL's sales worldwide are subject to macroeconomic forces that determine international trade; that is, the global business cycle. These in turn tend to show some persistence. Hence, the dynamics of the system must be caused by macroeconomic variables in the error term. For that reason, most of the models tested section 4.2 include lagged values of the residuals of the static regression model to account for this dynamic behaviour of the population process¹⁶.

Endogeneity has been systematically checked in section 4.3 for all the models proposed. To that end, the approach suggested by is implemented¹⁷. The results of this test show that the assumption of exogeneity is correct (even if country-fixed-effects are ignored) as long as the dynamics of the population process are taken into account. This is very much expected in the sense that the idea behind using the Mundlak test is to test whether the time-invariant unobservable (unobserved heterogeneity) is correlated with our regressors of interest; in

¹⁶ (Beck & Katz, 2011) deals with a variety of dynamic issues in the analysis of time-series–crosssection data that can be addressed by different kinds of dynamic specifications. In particular, the authors discuss the role of the serially correlated error model in panel data analysis governed by dynamic processes.

¹⁷ A thorough explanation of this method is provided in Annex B.

particular with the national price level regressor which gives us in the end the price elasticity estimate. The fact that we pass the Mundlak test shows that the covariates are uncorrelated with the error term, which includes the unobserved heterogeneity. As mentioned, this is expected because although the fixed effect embodies fundamental determinants of trade such as historical links or language, these are almost certainly not correlated to the national price level, which is determined by macroeconomic forces at a global scale.

3.4.2 Errors-in-variables

Some of the independent variables might have been measured with errors. This would lead to inconsistent OLS estimations that underestimate the coefficient (attenuation bias). When dealing with country-level economic data the reliability of statistical information from less developed countries is always a concern. However, a significant measurement error seems unlikely due to the fact that the data utilised comes from a trusted external source such as the World Bank. In any case, even if some of those less developed countries include measurement error, they are not among the countries NPL sells the most, thus the relevance in our regression analysis is assumed minimal.

3.4.3 Simultaneity

Simultaneity bias can be ruled out from the get-go mainly because of the nature of the analysis. Our goal is to explain NPL sales worldwide through macroeconomic variables that are driven by forces at a global scale. Even if a hidden macroeconomic variable is affecting both the dependent variable and one of the regressors, as mentioned before, our specification controls for it by including a dummy variable for the year which should capture the effect of significant events.

3.4.4 Weighting of observations in the sample

An analytical weighting correction has been implemented across all estimations conducted, because the dependent variable consists of the number of invoices issued to a country divided by its population. Although the change in the results is not noticeable (the same values and confidence intervals are obtained up to several significant figures), the correction has been implemented as it is the standard in the empirical economic literature that uses country-level data.

3.4.5 Selectivity

Finally, selection bias deserves a more detailed explanation, since it is very relevant to our analysis. Many countries in the dataset, usually small and/or less developed countries, do not make any purchase in some years, and, thus, NPL does not issue any invoice to those countries. As a result, the dependent variable is zero for over 40% of the dataset. Moreover, since equation 4.1 is specified in terms of the logarithm of the dependent variable, a significant incidental truncation arises. In order to address this issue, a two-step selection correction has been used to model the individual sampling probability of each observation occurring (extensive effect), together with the conditional expectation of the dependent variable (intensive effect). In other words, the approach adopted allows us to disentangle the incidence of the national price level on the probability of purchase and the level of consumption. The first stage is represented by the dichotomous choice of whether to purchase NPL measurement services or not, and the second stage determines the level of consumption once the decision to purchase is made.

3.5 Estimation

Four different models have been tested based on the population equation 4.1. Models A1 to A3 consists of uncorrected for selectivity OLS regressions. Model A1 is static. Thus, it consists of a first naïve approximation to the population process that neglects any persistence.

However, as mentioned in section 4.1.1, the generating process is likely to exhibit some inertia, due to all the macroeconomic unobservables in the error term. For that reason, models A2 and A3 introduce one lag and three lags of the residuals of A1 respectively. These hold significant explanatory power over the dependent variable – the latter removing any trace of serial correlation. Thus, the presumed dynamic structure is confirmed. Lastly, Model B1 consists of the 2-step Heckman correction of A3. This is the preferred model because it accounts for the dynamics of the population process, as well as the potential bias coming from selectivity in the sample.

This subsection first introduces the estimations results for the four models, analysing the economic meaning of each estimated coefficient. Then the preferred model is presented and analysed in depth to show how the correction proposed by applies to our model and why it is a reliable method to this context.

3.5.1 Models tested and interpretation of the coefficients

	Model A1		Model A2		Model A3		Model B1	
DV = log /	Coeff.	P- value	Coeff.	P- value	Coeff.	P- value	Coeff.	P- value
log PL	1.31 (0.10)	0.000	1.25 (0.08)	0.000	1.19 (0.07)	0.000	1.24 (0.08)	0.000
log GDP	1.15 (0.08)	0.000	1.23 (0.07)	0.000	1.25 (0.07)	0.000	1.33 (0.08)	0.000
CMC	-0.02 (0.00)	0.000	-0.02 (0.00)	0.000	-0.02 (0.00)	0.000	-0.02 (0.00)	0.000
log D	-0.44 (0.03)	0.000	-0.45 (0.02)	0.000	-0.47 (0.02)	0.000	-0.48 (0.02)	0.000
log POP	-0.20 (0.04)	0.000	-0.20 (0.02)	0.000	-0.20 (0.02)	0.000	-0.17 (0.03)	0.000
<i>u</i> (t-1)			0.76 (0.03)	0.000	0.36 (0.05)	0.000	0.35 (0.05)	0.000
<i>u</i> (t-2)					0.33 (0.04)	0.000	0.33 (0.04)	0.000
<i>u</i> (t-3)					0.22	0.000	0.22	0.000

Table 3 summarises the estimations results for models A1 to A3 and model B1:

	·				(0.04)		(0.04)	
Λ							0.28	0.047
							(0.14)	
	F-stat	P- value	F-stat	P- value	F-stat	P- value	F-stat	P- value
time dummies	7.13	0.000	11.23	0.000	18.59	0.000	17.87	0.000
R-squared	0.81		0.92		0.94		0.	94
Number of obs.	939		801		648		64	48
Heckman	No		No		No		Yes	

Table 3: Estimation results.

The estimated coefficients for our variables of interest are highly significant and make perfect economic sense. Notably, the price level coefficient is positive. This is consistent with the definition of the national price level given by equation 2.1. With respect to GDP per capita, the coefficient is also coherent with the expected income effect, since NPL's services are supposed to be normal goods whose demand increases with real income. By contrast, the negative significant coefficients found for distance and CMCs of the local NMI tally with our assumption of transactional frictions in the form of transport and search costs. Furthermore, the statistical significance of the population coefficient suggests a non-linear relationship of the number of invoices and the population of the country. In addition, the significance of the generation process.

Lastly, there is an additional regressor symbolised by λ which only applies to model B1. This is called the Inverse Mills Ratio (IMR), and results from a probit model that tries to reproduce the decision made by users worldwide about whether to buy NPL's services or not. Surely, there are unobserved factors that make the decision of buying NPL's services more likely, as well as being associated with higher levels of consumption. In other words, it is expected that those users who are more inclined to buy NPL's services, are also the ones that buy more services. By adding the IMR to the dynamic structure set by A3, we can control for those unobserved factors that affect both the decision of buying NPL's services and the level of consumption; thus, any bias in the rest of estimated parameters can be corrected.

The next subsection analyses in more depth the preferred setup Model B1. It depicts extensively the application of the Heckman correction to our model and justifies why it is a suitable method to address the potential selection bias in the analysis. Finally, the estimation results are interpreted focusing on the existing bias on the uncorrected setup, A1 to A3.

3.5.2 Model B1: 2-step Heckman selection model

The estimates found through the models A1 to A3 might be biased due to selectivity. The coefficients estimates may not be applicable to all countries (buyers and non-buyers) because we only observe those that actually make a purchase. In other words, the estimation results

may not be representative of the whole population because of the non-random nature of the observed sample. To correct for this source of bias, we follow the approach proposed by . Formally, the correction to account for incidental truncation consists of adding an explicit selection equation to our population equation 4.1. Thus, the model is given by:

$$\log I_{i,t} = \beta_0 + \beta_1 \log PL_{i,t} + \beta_2 \log GDP_{i,t} + \beta_3 CMC_i + \beta_4 \log D_i + \beta_5 \log POP_i + \gamma_t Y_t + \delta_1 u_1 + \delta_2 u_2 + \delta_3 u_3 + \varepsilon_{i,t}$$
(4.2a)

$$s_{i,t} = 1 \Big[\eta_0 + \eta_1 \log PL_{i,t} + \eta_2 \log GDP_{i,t} + \eta_3 CMC_i + \eta_4 \log D_i + \eta_5 \log POP_i \\ + \theta_i Y_t + \kappa_1 v_1 + \kappa_2 v_2 + \kappa_3 v_3 + \varphi_{i,t} \Big]$$
(4.2b)

where $s_{i,t} = 1$ if a purchase is made, and zero otherwise, $I_{i,t}$ is the number of invoices issued to country *i* in year *t* normalised by the population of the country, $PL_{i,t}$ is the national price level, $GDP_{i,t}$ is the gross domestic product per capita, CMC_i is a continuous index that rates the measurement capabilities of the country, D_i is the distance between the country and the UK, POP_i is the population of the country, Y_t is a year dummy variable, u_1 to u_3 are the first three lagged residuals of the static uncorrected model (Model A1), v_1 to v_3 are the first three lagged residuals of the static specification of the probit model, and $\varepsilon_{i,t}$ and $\omega_{i,t}$ are the error terms in the population and selection equation respectively, which are assumed to be independently and identically distributed as a normal distribution with mean of 0 and finite variance.

An important remark should be made with regard to the differences between the sets of regressors used in both equations 4.2. Ideally, for the proposed method to work best, the set of regressors in the population equation should be a strict subset of the covariates in the selection equation. This means that two conditions must be satisfied: (1) any of the regressors in equation 4.2a should also be included in equation 4.2b, and (2) some of the regressors in equation 4.2b should not appear in equation 4.2a.

Technically, the first constraint is not met, whereas the second one is. Indeed, the first three lagged residuals of the static uncorrected model, u_1 to u_3 , are not included in equation 4.2b. Conversely, these have been substituted by the first three lagged residuals of the static specification of the probit model. The reason for this is that, although both sets of residuals are linked to the unobservables, arguably the latter is more suitable to consider the effect of the omitted variables on the outcome variable since it does so in probabilistic terms. In any case, ideally, at least a true additional identifying variable should be included in the selection equation. This variable would affect the probability of making a purchase, but not (at least to a large extent) the number of invoices issued. However, all attempts to include identifying variables linked to the complexity of the country's exports or the relevance of the manufacturing sector have been unsuccessful. The reason for this is that these variables are highly correlated with the CMC regressor which assesses the measurement capabilities of the local NMI – and which holds more explanatory power. Nevertheless, the proposed setup happens to work quite well in terms of statistical significance and makes the most sense from a theoretical perspective.

The Heckman two-stage estimation procedure allows us to decompose the total effect of the covariates of interest (in particular the price level) into an extensive (probability of purchase – equation 4.2b) and an intensive (level of consumption – equation 4.2a) component.

Table 4 summaris	ses the es	timation r	esults of	the probit model	that a	assesses t	he prob	ability of
purchasing NPL	services	(dummy	variable	TREATED = 1)	as a	a function	of the	original
regressors ¹⁸ .								

	Probit Model				
DV = <i>TREATED</i>	Coeff.	P-value			
	0.91	0.000			
log PL	(0.19)				
	0.91	0.000			
log GDP	(0.09)				
0.40	0.02	0.211			
CMC	(0.01)				
	-0.26	0.000			
log D	(0.07)				
	0.46	0.000			
log POP	(0.06)				
v († 1)	-0.40	0.229			
v (t-1)	(0.34)				
v (t-2)	-1.22	0.000			
V (l-2)	(0.33)				
v (t-3)	-0.17	0.586			
v (1-0)	(0.32)				
Pseudo R- squared		0.44			
Number of obs.		1134			

Table 4: Probit regression estimation results (extensive effect).
---	--------------------

¹⁸ The estimated coefficients for the year dummy variables have been omitted from this output for the sake of conciseness. These are included in Annex D.

These coefficients have no direct interpretation in terms of marginal effects; they are simply the values that maximise the likelihood function. Although the signs of the coefficient give the direction of the effect, their magnitude is in units of the standard-deviation of the errors. There are two commonly used approaches to approximate the marginal effects for non-linear models: the partial effects at the average (PEA) and the average partial effect (APE). The PEA is the marginal effect evaluated at the average value for each regressor; the APE is simply an estimate of a population-averaged marginal effect:

$$PEA_{j} = \frac{\partial \mathbf{E}[y|\mathbf{x}]}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=\overline{\mathbf{x}}} = \frac{\partial \Phi[\mathbf{x}\boldsymbol{\beta}]}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=\overline{\mathbf{x}}} = \hat{\beta}_{j} \cdot \varphi(\overline{\mathbf{x}}\widehat{\boldsymbol{\beta}})$$
(4.3a)

$$APE_{j} = \frac{\hat{\beta}_{j}}{N} \sum_{i=1}^{N} \varphi(\mathbf{x}\widehat{\boldsymbol{\beta}})$$
(4.3b)

where PEA_j and APE_j are the partial effect at the average and the average partial effect for regressor *j*, *y* and *x* are denote our binary dependent variable and the set of covariates in the probit regression, *N* is the total number of observations, $\varphi(\cdot)$ is the standard normal density function, and $\hat{\beta}$ is the vector of the parameter estimates (including the intercept) of the probit regression – with $\hat{\beta}_j$ representing a component of that vector. Table 5 below shows both approximations of the marginal effects¹⁹.

DV =	Marginal Effe	ect at Means	Average Marginal Effect		
TREATED	Coeff.	Coeff. P-value		P-value	
log PL	0.18 (0.04)	0.000	0.17 (0.04)	0.000	
log GDP	0.18 (0.03)	0.000	0.17 (0.01)	0.000	
CMC	3.6E-03 (2.6E-03)	0.173	3.4E-03 (2.7E-03)	0.204	
log D	-0.05 (0.01)	0.000	-0.05 (0.01)	0.000	
log POP	0.09 (0.01)	0.000	0.09 (0.01)	0.000	

¹⁹ Again, the estimated coefficients for the year dummy variables have been omitted; these can be found in Annex D.

v († 1)	-0.08	0.240	-0.08	0.230		
v (t-1)	(0.07)		(0.06)			
v (t-2)	-0.24	0.000	-0.23	0.000		
v (t-2)	(0.07)		(0.06)			
v (t-3)	-0.03	0.587	-0.03	0.586		
V (1-3)	(0.06)		(0.06)			
Number of obs.	1134			1134		

Table 5: Partial effects for the extensive effect.

Note that both effects are very similar for all of the regressors. These is expected given the covariates are reasonably normally distributed, and thus, the mean is a good measure of centrality within the domain of definition of the covariates.

Once the extensive effect is estimated, we can turn our attention to the intensive effect. Our objective is to know how the variables of interest affect the level of consumption – in particular, the national price level. If we analyse this through a simple OLS regression, the results will be surely biased because the factors that determine if users buy NPL's services, also affect how much they consume. Hence, the sample we are working with is not representative of the whole population. In effect, we need to separate out the two decisions made by the user: whether to make a purchase or not (extensive), and how much to buy (intensive). To that end, we can use the results of the previous probit estimation by computing the Inverse Mills Ratio. The IMR is equivalent to the concept of hazard ratio in survival analysis, or force of mortality in demography and actuarial science. In the context of our analysis, the IMR shows the relative increase in the likelihood of buying NPL's services given a unit change in the level of consumption:

$$\lambda_{i,t} = \frac{\varphi(x\widehat{\beta})}{\Phi(x\widehat{\beta})}$$
(4.3)

If the estimate of the linear parameter corresponding to the IMR is significant (expected positive), then we know the unobserved factors that make the decision of buying NPL's services more likely, tend to be associated with higher levels of consumption. Therefore, effectively, including the IMR in the OLS regression allows us to control for those unobserved factors and correct any bias in the rest of estimated parameters. Table 6 shows the results of the OLS regression including the IMR obtained from the previous probit setup.

DV = log /	Model B1	
	Coeff.	P-value
log PL	1.24 (0.08)	0.000

log GDP	1.33 (0.08)	0.000
CMC	-0.02 (0.00)	0.000
log D	-0.48 (0.02)	0.000
log POP	-0.17 (0.03)	0.000
<i>u</i> (t-1)	0.35 (0.05)	0.000
<i>u</i> (t-2)	0.33 (0.04)	0.000
<i>u</i> (t-3)	0.22 (0.04)	0.000
λ	0.28 (0.14)	0.047
	F-stat	P-value
time dummies	17.87	0.000
R-squared		0.94
Number of obs.		648

Table 6: Heckman's selection model estimation results (intensive effect).

As expected, the IMR is significant and positively signed – which suggests that the error terms in the selection and primary equations are positively correlated. Therefore, we confirm our suspicions that factors that make buying NPL's services more likely are associated with purchasing more of these goods. This justifies the use of Heckman's correction in our setup and provides confidence on the estimation results.

Finally, the estimated coefficient on the national price level is now larger than before – that is if we compare estimates for models A3 and B1. This indicates that the non-random nature of the sample biases the price elasticity down.

3.6 Postestimation

This subsection analyses the validity of the models tested, particularly that of the preferred 2step Heckman selection model. Table 7 shows the results of a link test²⁰ which has been run to check for misspecification of the dependent variable for the four models tested. The motivation behind the link test is to assess if a regression model is affected by the so-called link error, that is, that the dependent variable needs a transformation or *link* function to properly relate to the independent variables. To verify this is not the case, the link test regresses the dependent variable against the original regression's predicted values and the squared values of this prediction. If the squared prediction regressor is significant, there is evidence that the model is mis specified; in addition, it is expected that the coefficient for the prediction regressor is highly significant with a coefficient close to one.

	Mod	el A1	Mod	Model A2		el A3	Mod	Model B1	
DV = log <i>l</i>	Coeff.	P- value	Coeff.	P- value	Coeff.	P- value	Coeff.	P- value	
predicted values	1.07	0.000	1.31	0.000	1.04	0.000	1.03	0.000	
	(0.20)		(0.12)		(0.11)		(0.11)		
squared prediction	0.00	0.706	0.01	0.011	0.00	0.731	0.00	0.768	
	(0.01)		(0.00)		(0.00)		(0.00)		
R-squared	0.82		0.92		0.	0.94		94	
Number of obs.	93	39	80	01	64	48	64	48	

Table 7: Link test.

All the models pass the test. Even in the case of model A2 for which the coefficient of the squared prediction is statistically significant, the coefficient itself is very close to zero. However, clearly those models that include three lags of the error term of the static model (models A3 and B1) behave better. Therefore, the link test provides assurance in the specification of the preferred model.

In order to provide further evidence of the correct specification of the model, the Ramsey Regression Equation Specification Error Test (RESET) is conducted. This technique tests whether non-linear combinations of the fitted values have explanatory power over the dependent variable. The intuition behind this test is that if the second or the third power of any of the regressors, or any interaction term between them have any power in explaining the

²⁰ The test implemented here is based on an idea of (Tukey, 1949) which was further described by (Pregibon, 1980).

dependent variable, then the model omits relevant variables and may be better approximated by different functional form. Table 8 reports the results of the Ramsey RESET test for the four models considered.

Мос	del A1	Model A2		Мо	del A3	Model B1		
F-stat	P-value	F-stat	P-value	F-stat P-value		F-stat	P-value	
12.02	0.00	6.67	0.00	1.64	0.18	1.52	0.21	

Table 8: Ramsey RESET test.

Like the link test, the Ramsey RESET test favours both specifications that account for three lags of the error term of the static regressions. Moreover, these are the only specifications that pass the test; hence, the test supports the preferred Heckman-corrected dynamic specification – model B1.

Two other important aspects to ensure the validity of the specification proposed are whether there are signs of endogeneity in the models tested, and whether the residuals are serially correlated. Both issues can be analysed together since they are linked. Indeed, endogeneity is likely to arise due to the dynamics of the generating process, hence leading to serially correlated errors if not taken into account. Table 9 shows the results of a test based on which allows us to test for endogeneity is an alternative to the Hausman test²¹. Unlike the Hausman test, the method developed by Mundlak may be used when the errors are heteroskedastic or have intragroup correlation. Hence, this alternative approach is especially suitable for the purpose of this analysis.

²¹ A thorough explanation of the intuition and the algebra behind this method is depicted in Annex B.

	Mod	el A1	Mod	el A2	Mod	el A3	Mod	el B1
DV = log <i>l</i>	Coeff.	P- value	Coeff	P- value	Coeff	P- value	Coeff	P- value
log PL	-0.04 0.19	0.816	1.00 0.17	0.000	0.74 0.27	0.006	0.77 0.26	0.004
mean (log <i>PL</i>)	1.83 0.34	0.000	0.28 0.22	0.218	0.50 0.30	0.094	0.52 0.28	0.066
log GDP	0.85 0.22	0.000	1.24 0.18	0.000	1.37 0.22	0.000	1.47 0.23	0.000
mean (log <i>GDP</i>)	-0.10 0.25	0.682	-0.02 0.19	0.911	-0.14 0.21	0.509	-0.16 0.21	0.457
CMC	-0.01 0.01	0.105	-0.02 0.00	0.000	-0.02 0.00	0.000	-0.02 0.00	0.000
log D	-0.40 0.12	0.001	-0.45 0.03	0.000	-0.46 0.02	0.000	-0.47 0.02	0.000
log POP	-0.32 0.10	0.002	-0.20 0.04	0.000	-0.20 0.02	0.000	-0.17 0.02	0.000
	F-stat	P- value	F-stat	P- value	F-stat	P- value	F-stat	P- value
Time dummies	240.3 3	0.000	93.91	0.000	44.45	0.000	48.04	0.000
Panel-level means	29.43	0.000	1.57	0.457	3.97	0.137	4.32	0.115
R-squared	within = 0.323 between = 0.861 overall = 0.808		betw 0.9	within = 0.14 between = 0.982 overall = 0.917		= 0.137 een = 988 = 0.938	within = 0.136 between = 0.991 overall = 0.939	

Number of obs.	939	801	648	648
Heckman	No	No	No	Yes

Table 9: Mundlak test.

After accounting for the dynamics of the generating process the cluster means of the two timevarying covariates become insignificant. Therefore, this means that our choice to explicitly model this inertia is appropriate, and particularly our preferred model B2 shows no signs of endogeneity. These conclusions are reinforced when we test whether the residuals are serially correlated:

DV =	Model A1		Model A2		Model A3		Model B1	
residuals	Coeff.	P- value	Coeff.	P- value	Coeff.	P- value	Coeff.	P- value
residuals (t-1)	0.76 (0.02)	0.000	-0.29 (0.04)	0.000	-0.03 (0.04)	0.453	-0.03 (0.04)	0.444

Table 10: Serial correlation test.

It can be concluded that those models that incorporate three lags of the residuals of the static model better reflect the dynamics of the generating process.

Finally, it is necessary to make a brief mention about the normality of the residuals of the models tested. Although the sample is not very wide (just below a thousand observations) in all cases the residuals have a fairly normal distribution. This can be appreciated in Figure 2 where the histogram of the residuals for all models are plotted, and a kernel density estimation of the probability density function is compared against the expected normal distribution.

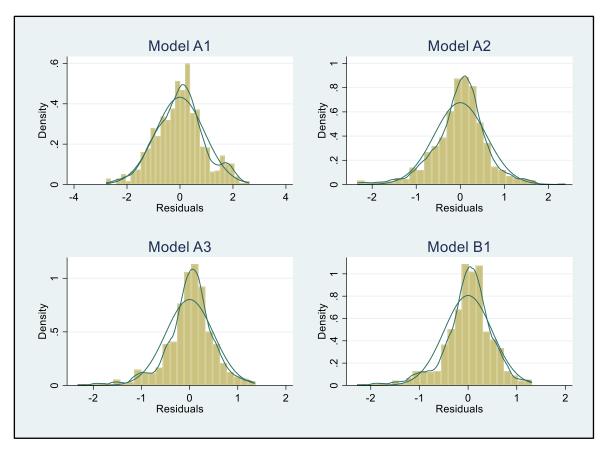


Figure 2: Normality of the residuals.

4 Economic Impact

This section shows how the price elasticity found in the previous econometric analysis can be used to estimate the welfare generated by NPL for the UK's society. It should be emphasized that the objective here is not to develop a comprehensive and accurate impact analysis, but to showcase that the price elasticity of demand is a useful tool to asses welfare generated. Therefore, the reader should not expect the following to be a detailed and complete analysis of the net present value of the public funding of NPL. In fact, all the figures pertaining to NPL's finances and public support received are estimative (although not very far off). Thus, any costbenefit ratio presented should not be taken as representative of the current value for money of NPL public financing.

When it comes to assessing welfare created, there are two main types of benefits generated: direct and indirect benefits. Direct benefits are those that occur *within* supported companies. Effectively, NPL sells the time and the expertise of its scientists and engineers who help users to develop new products and processes. New products enable supported businesses to increase their market power and command a price premium. New processes enhance productivity and competitiveness. In any case, NPL's services lead to additional earnings, either through increased sales or costs savings. However, direct benefits are not limited to the increase in private profits which roughly accounts for about 25% of gross value added (GVA). The remaining three quarters are earned by workers in the form of higher salaries. Therefore, GVA is probably about four times the direct return to NPL's paying customers.

There are wider benefits that arise *beyond* the supported businesses. These are indirect benefits that occur because knowledge generated due to the collaboration between NPL and paying customers spills over to unsupported firms – normally in the same sector. The main channel through which this knowledge benefits companies that do not engage with NPL is the movement of workers among firms. The intuition behind this knowledge spillovers is as follows. First, a company engages with NPL. This allows the supported business to acquire knowledge which is then drawn on to promote additional sales and/or costs savings. Obviously, most of this knowledge is effectively obtained by the company's workers. If these workers decide to move to other firms (typically in the same sector or industry), they will carry over the acquired new knowledge. Frontier Economics found that the existing literature estimates that "social returns, based on spillover benefits from R&D conducted by one agent to the productivity or output of other agents, are typically 2 to 3 times larger than private returns." Therefore, in this analysis we will stick to the lower bound of these estimates and will approximate the indirect benefits by just doubling the direct benefits.

Lastly, given that 50% of NPL's income comes from customers who are based in other countries, the question of whether those sales have a positive impact in the UK arises. Regarding the direct benefits, it is clear that none of these stay in the UK – most of the GVA generated happens in the foreign country. However, that is not the case for indirect benefits. Indeed, NPL plays a fundamental role when it comes to any knowledge generated from collaborations with non-UK based users spilling over to UK businesses. This is due to the fact that NPL's scientific staff gain knowledge as a result of the collaboration. Moreover, these scientists and engineers tend to be young professionals who are likely to switch jobs given they are in the early stages of their career. In fact, the stability in NPL's workforce has decreased in recent times, as has the average age of workers. In this sense, NPL acts as a platform for all the knowledge generated (including the one developed as a result of collaborations with overseas companies) to reach all layers of the sectors involved. Hence, in the following impact analysis we will account for indirect benefits resulting from sales to users abroad, despite direct benefits being ignored.

4.1 Direct benefit to paying customers and welfare for the UK

Companies regard NPL's services as investment projects that generate profits over time. A rational user would prioritise projects with a higher payoff and, if no budget constraint is in place, would buy NPL's services to the point that the marginal benefit equals the marginal cost. This suggests a downward sloping aggregate demand curve for NPL's services: more profitable projects yield higher future earnings which increases customers' willingness to pay. This situation is depicted in Figure 3. The horizontal axis shows the number invoices issued by NPL, which is a proxy for the volume of services provided. The vertical axis of Figure 3 is the net present value of the investment projects supported by NPL.

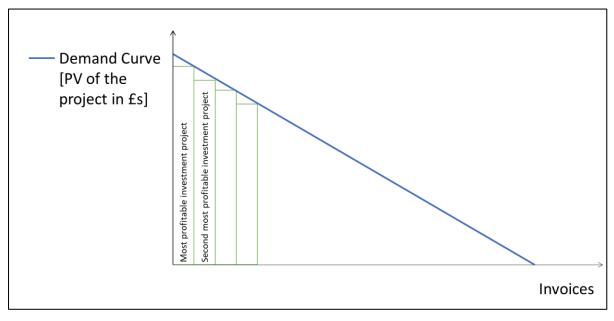


Figure 3: Demand curve for NPL's services.

Therefore, at first approximation the demand curve for NPL's services is given by:

$$p(Q) = A - BQ \tag{5.1}$$

Where A > 0 and B > 0 are constants.

The direct benefit to NPL's customers is given by the area beneath the curve:

$$\Pi = pQ + \frac{1}{2}(A - p)Q = AQ - \frac{1}{2}BQ^2$$
(5.2)

Hence, in order to estimate the direct benefit to paying customers, we need to know the values of A and B. To that end, we can make use of the price elasticity of demand:

$$\varepsilon_p^0 = \frac{dQ}{dp} \frac{p^0}{Q^0} = -\frac{1}{B} \frac{p^0}{Q^0}$$
(5.3)

Note that in general the value of the elasticity depends on the level of sales. (In particular, this is true for the linear approximation we are considering). Thus, the superscripts in ε_p , p and Q denote the fact these are evaluated in the current market equilibrium.

Parameters *A* and *B* can be derived from the price elasticity of demand given the current level of sales:

$$B = -\frac{1}{\varepsilon_p^0} \frac{p^0}{Q^0}$$
(5.4a)

$$A = p^{0} + BQ^{0} = p^{0}(1 - \frac{1}{\varepsilon_{p}^{0}})$$
(5.4b)

As mentioned in section 2.1, the elasticities of demand with respect to conventional price and the national price level are equivalent in magnitude but of opposite sign:

$$\varepsilon_p^0 = -\varepsilon_L^0 \tag{5.5}$$

Where ε_L^0 is the national price level elasticity of demand estimated in section 4.

If we substitute equations 5.4 and 5.5 into 5.2, we get:

$$\Pi^{0} = AQ^{0} - \frac{1}{2}B(Q^{0})^{2} = p^{0}Q^{0}\left(1 + \frac{1}{\varepsilon_{L}^{0}}\right) - \frac{1}{2}\frac{1}{\varepsilon_{L}^{0}}p^{0}Q^{0} = R^{0}\left(1 + \frac{1}{2\varepsilon_{L}^{0}}\right)$$
(5.6)

Where R^0 is the revenue made by NPL.

The average commercial revenue made by NPL over the last three years was $\pm 35.6m^{22} - 50\%$ ($\pm 17.8m$) of it was generated in the UK. Substituting this figure along with the national price level elasticity found in the econometric analysis of section 4 into equation 5.6, we get:

$$\Pi^{D} = 17.8 \cdot \left(1 + \frac{1}{2} \cdot \frac{1}{1.24}\right) = 25.05$$
 [£m]

Hence, it is estimated that NPL's work with UK businesses generates $\pounds 25.05m$ for supported companies. However, a mentioned at the beginning of this section, this direct return to NPL's paying customers corresponds to additional profits rather than gross value added (GVA). Hence, given that the return to capital (profit) accounts for about 25% of income, the corresponding increase in GVA is probably about four times the result given by equation 5.6, that is, $\pounds 100.20m$. Now, if we take into account that the current level of public funding received by NPL is $\pounds 83.10m$, we end up with a cost-benefit ratio of 1.21.

²² Instead of using the average revenue generated throughout the whole period considered in the econometric analysis (2001-2017), only the average of the last three years of the dataset has been taken. This is considered to be more representative of the current situation. All revenue figures have been conveniently inflated to 2019 prices based on the GDP deflators provided by the ONS.

Up to this point, only the direct benefits that take place within supported companies have been calculated. Given the nature of the work carried out by the scientific staff of NPL, the benefits spill over to non-supported companies, thus carrying even greater benefits for the UK. As was also mentioned at the top of this heading, Frontier Economics finds that social returns are typically 2 to 3 times larger than private returns. Therefore, we can estimate the indirect benefits by doubling the direct benefits. Moreover, we argued that NPL allows for spillovers to occur even when the collaboration takes place with overseas users. Therefore, doubling the direct benefits to all customers is a reasonable approximation of the overall indirect benefits for the UK. Hence, given that average revenue made by NPL over the last three years was £35.6m, the direct benefit generated for all customers (UK and overseas) is given by:

$$\Pi^{I} = 35.6 \cdot \left(1 + \frac{1}{2} \cdot \frac{1}{1.24}\right) = 49.95$$
 [£m]

Now, this figure multiplied by 4 gives us the additional gross value added (GVA), £199.82m. Lastly, if we double this number, we get the indirect benefits for the UK, £399.64m, which added to the direct benefits previously computed, yields a total welfare generated of £499.84m and a cost-benefit ratio of 6.01 when the current level of public funding received by NPL is considered.

4.2 The effect of shifts in public funding received by NPL on welfare

generated

From an evidence-based policy perspective, it is key to know the effect of a change in the public funding of NPL and the welfare generated. Public funds allow NPL to hire scientific staff who support UK companies develop new product or processes. In other words, since NPL is an organisation that acts as a vehicle to efficiently allocate the public funds needed to complement private spending in measurement R&D, there is a strong relationship between public support and NPL's output. The estimation of such relationship exists and is stable, it is possible to assess the effect on welfare generated of a variation in NPL's output. Therefore, we will consider that a reduction in public funding triggers an equivalent reduction in output. That is, for every 1% less in public funding, a 1% reduction in output is expected. Figure 4 shows a schematic representation of a shift in output of 20% up (E'') or down (E').

Figure 4: Changes in welfare generated.

The direct benefits to paying customers is currently given by areas 1 and 2 – this has been estimated in the previous section. Area 3 corresponds to the additional welfare that would be created if NPL's output increases by 20% (triggered by an equivalent increase in funding). Conversely, area 2 is what would be lost if NPL's reduces its output by 20% (because of a 20% reduction in funding). Analytically, this can be estimated using equation 5.6, for which parameters *A* and *B* stay constant. Thus, the first step is to compute both parameters using the current number of invoices issued in the UK (3,860 invoices), and the average size of an invoice ($\pounds 4,624$)²³. These are given by Table 11:

Parameter	Value
A	£8,354
В	£0,97/Invoice

Table 11: Parameters for the demand curve.

Next, the output (number of invoices issued) in the new equilibria must be calculated (Q' for E', and Q'' for E''), as well as the corresponding level of public funding (F' and F'' respectively). These consist of a 20% positive and negative variation over the current situation. Table 12 shows these alternative equilibria.

Parameter	Value
Q'	3,088 invoices
<i>F'</i>	£66.5m
Q''	4,632 invoices
<i>F''</i>	£99.7m

Table 12: Alternative equilibria.

²³ Again, the last three years of the dataset are considered to be a representative period of the current situation.

Lastly, we can proceed the same way we did in the previous subsection. First, we calculate the change in private profits generated for the supported UK companies using equation 5.6 and multiply by 4 to get the variation in GVA. This gives us the change in direct benefits. Secondly, to get the change in indirect benefits we calculate the GVA variation for all users and multiply by 2. The sum of both variations (direct and indirect benefits) yields the overall change in welfare and cost-benefit ratios²⁴. For the 20% decrease in funding scenario the overall welfare is reduced in £77.11m, yielding a decrease in the cost-benefit ratio of -1.16; for the 20% increase in public funds scenario the welfare increases by £65.60m and the cost-benefit ratio by 0.66.

²⁴ For the sake of simplicity all of these calculations have been omitted since they are equivalent to those made in section 4.1.

5 Conclusion

Our study estimates the price elasticity of demand for NPL's services, finding that it is well above 1 at 95% confidence. This supports the idea that NPL's services are elastic goods for which the quantity demanded will change more than proportionally if the price changes.

We apply standard panel data analysis to a country-level panel dataset to estimate the price elasticity of demand. The data utilised consists of NPL internal invoicing information, as well as data on financial and demographic variables coming from trusted external commonly-used sources (namely, the World Bank, the *Centre d'Etudes Prospectives et d'Informations Internationales*, the Bureau of Weights and Measures, and the United Nations). The proposed analytical setup allows us to control for several variables that are expected to affect the number of services sold. All controls in our model, GDP per capita, distance and the measurement capabilities of local competing NMIs, turned out to be highly significant.

6 References

- Arrow, K. (1962). Economic welfare and the allocation of resources for invention. In R. R. Nelson, *The Rate and Direction of Inventive Activity: Economic and Social Factors* (pp. 609-625). NJ: Press: Princeton.
- Barlev, G. (2007). On the cyclicality of research and development. *American Economic Review*, *97*(4), 1131-1164.
- Beck, N., & Katz, J. N. (2011). Modeling dynamics in time-series--cross-section political economy data. *Annual Review of Political Science*, 331-352.
- Bureau International des Poids et Mesures. (2019, August 27). *BIPM Calibration and Measurement Capabilities CMCs.* Retrieved September 15, 2019, from https://www.bipm.org/utils/common/pdf/KCDB/KCDB_CMCs.pdf
- Davidson, R., & MacKinnon, J. G. (1981). Several tests for model specification in the presence of alternative hypotheses. *Econometrica*, 781-793.

Frontier Economics. (2014). Rates of return to investment in science and innovation. London.

- Frontier Economics. (2016). The Impact of Public Support for Innovation on Firm Outcomes.
- Head, K., & Mayer, T. (2002). Illusory border effects: Distance mismeasurement inflates estimates of home bias in trade. Citeseer.
- Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. *Annals of Economic and Social Measurement, 5*(4), 475-492.
- HM Treasury. (2018). The Green Book: Central Government Guidance on Appraisal and Evaluation.
- Mundlak, Y. (1978). On the pooling of time series and cross section data. *Econometrica: journal of the Econometric Society*, 69-85.
- Pregibon, D. (1980). Goodness of link tests for generalized linear models. *Journal of the Royal Statistical Society: Series C (Applied Statistics), 29*(1), 15-24.
- Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression analysis. *Journal of the Royal Statistical Society: Series B (Methodological), 31*(2), 350-371.
- Tassey, G. (2004). Underinvestment in public good technologies. *The Journal of Technology Transfer, 3*(1-2), 89-113.
- Tassey, G. (2008). and measuring the economic roles of technology infrastructure. *Econ. Innov. New Techn.*, *17*(7-8), 615-629.
- Tukey, J. W. (1949). One degree of freedom for non-additivity. *Biometrics, 5*(3), 232-242.
- Winning Moves. (2017). National Measurement System: Customer Needs and Impact Survey. NMS.

Annex A: Robustness tests

This annex weighs the effect of some of the decisions adopted throughout the analysis. Particularly with regard what countries to include in the analysis, and the methodological approaches taken as to how to deal with the distinct nature of the observations of the UK, the treatment given to outliers, and the definition of the CMC variable.

Countries that do not purchase NPL's services regularly

One of the fundamental features of the dataset is the notable differences among the countries included. For some of them, the size and commercial interrelations with the UK ensures a stable flow of purchases over time. For others, usually small less developed countries, buying services from the NPL is a rare event. This could lead to some sort of bias in the estimation results. Therefore, the effect of excluding countries that do not have a minimum number of observations has been verified. In particular, the effect of excluding countries that have only one observation, up to five observations (models C1 to C5), has been systematically tested. The results of this robustness test are included in Table 13, which shows that the effect is not very significant and that is why the main analysis is carried out with all observations.

	Model	B1	Model	C1	Model	C2	Model	C3	Model	C4	Model	C5
DV = log <i>l</i>	Coeff.	P- value										
log PL	1.24 (0.08)	0.000	1.24 (0.08)	0.000	1.23 (0.08)	0.000	1.17 (0.08)	0.000	1.12 (0.07)	0.000	1.13 (0.07)	0.000
log GDP	1.33 (0.08)	0.000	1.33 (0.08)	0.000	1.35 (0.07)	0.000	1.40 (0.07)	0.000	1.46 (0.07)	0.000	1.46 (0.07)	0.000
CMC	-0.02 (0.00)	0.000										
log D	-0.48 (0.02)	0.000	-0.48 (0.02)	0.000	-0.47 (0.02)	0.000	-0.48 (0.02)	0.000	-0.47 (0.02)	0.000	-0.47 (0.02)	0.000
log POP	-0.17 (0.03)	0.000	-0.17 (0.03)	0.000	-0.17 (0.03)	0.000	-0.16 (0.03)	0.000	-0.14 (0.03)	0.000	-0.14 (0.03)	0.000
<i>u</i> (t-1)	0.35	0.000	0.35	0.000	0.35	0.000	0.35	0.000	0.35	0.000	0.35	0.000

	(0.05)		(0.05)		(0.05)		(0.05)		(0.05)		(0.05)	
<i>u</i> (t-2)	0.33 (0.04)	0.000	0.33 (0.04)	0.000	0.33 (0.04)	0.000	0.33 (0.04)	0.000	0.33 (0.04)	0.000	0.33 (0.04)	0.000
<i>u</i> (t-3)	0.22 (0.04)	0.000	0.22 (0.04)	0.000	0.22 (0.04)	0.000	0.22 (0.04)	0.000	0.22 (0.04)	0.000	0.21 (0.04)	0.000
Λ	1.28 (0.43)	0.003	-1.24 (0.12)	0.000	-1.24 (0.12)	0.000	-1.26 (0.12)	0.000	-1.28 (0.12)	0.000	-1.27 (0.12)	0.000
	F-stat	P- value	F-stat	P- value	F-stat	P- value	F-stat	P- value	F-stat	P- value	F-stat	P- value
time dummies	17.87	0.000	17.87	0.000	18.50	0.000	19.23	0.000	19.16	0.000	18.49	0.000
R-squared	0.94		0.94		0.94		0.94		0.94		0.94	
Number of obs.	648		648		648		648		648		648	

Table 13: Preferred model after trimming countries with too few observations.

The effect of UK sales in the estimated elasticity of demand

Around 50% of NPL sales take place within the UK. This could have a significant effect on the price elasticity estimation results. Hence, the preferred two-step Heckman model has been run with and without (model D1) the observations of the UK. The results are given by Table 14:

	Мо	del B1	Mo	del D1
DV = log /	Coeff.	P-value	Coeff.	P-value
	1.24	0.000	1.15	0.000
log PL	(0.08)		(0.08)	
	1.33	0.000	1.23	0.000
log GDP	(0.08)		(0.08)	
CMC	-0.02	0.000	-0.01	0.000
CMC	(0.00)		(0.00)	
	-0.48	0.000	-0.36	0.000
log D	(0.02)		(0.02)	
	-0.17	0.000	-0.30	0.000
log POP	(0.03)		(0.03)	
<i>u</i> (t-1)	0.35	0.000	0.34	0.000
<i>u</i> ((-1)	(0.05)		(0.05)	
<i>u</i> (t-2)	0.33	0.000	0.33	0.000
u ((-2)	(0.04)		(0.04)	
<i>u</i> (t-3)	0.22	0.000	0.21	0.000
u (1-0)	(0.04)		(0.04)	
λ	1.28	0.003	-1.13	0.000
7	(0.43)		(0.12)	
	F-stat	P-value	F-stat	P-value

time dummies	17.87	0.000	14.31	0.000		
R-squared	().94	0.93			
Number of obs.		648		634		

 Table 14: Preferred model with and without UK observations.

As seen, the effect of not considering the UK observations is not significant (around a 10% variation).

Outliers in the dependent variable

Figure 1 in section 3 shows a box plot of the dependent variable. Two outliers lay beyond Tukey's fences (represented by the whiskers); they are not far from the rest of the observations though. This suggest that they should not have a significant misleading effect on the estimation of the elasticity of demand. To check that, the preferred model has been tested with and without these two observations (see Table 15).

	Мо	del B1	Mo	Model D1		
DV = log /	Coeff.	P-value	Coeff.	P-value		
	1.24	0.000	1.15	0.000		
log PL	(0.08)		(0.08)			
	1.33	0.000	1.23	0.000		
log GDP	(0.08)		(0.08)			
	-0.02	0.000	-0.01	0.000		
CMC	(0.00)		(0.00)			
	-0.48	0.000	-0.36	0.000		
log D	(0.02)		(0.02)			
	-0.17	0.000	-0.30	0.000		
log POP	(0.03)		(0.03)			
	0.35	0.000	0.34	0.000		
<i>u</i> (t-1)	(0.05)		(0.05)			

(+ (+ 2))	0.33	0.000	0.33	0.000
<i>u</i> (t-2)	(0.04)		(0.04)	
	0.22	0.000	0.21	0.000
<i>u</i> (t-3)	(0.04)	0.000	(0.04)	0.000
	()		()	
λ	1.28	0.003	-1.13	0.000
7	(0.43)		(0.12)	
	F-stat	P-value	F-stat	P-value
	1-5181	F-value	1-5181	F-value
time dummies	17.87	0.000	14.31	0.000
R-squared	0.94		C).93
Number of obs.		648	6	634

 Table 15: Preferred model with and without outliers.

As expected, the estimation results are almost equivalent.

Specification of the CMC variable

This subsection addresses the two methodological issues around the variable that controls for the capabilities of the local NMI:

- On the one hand, there is the question of which one of the two variables constructed using the table reported by BIPM to use; either the probabilistic measure of the NMI being able to fulfil the user's needs (based on the total number of services provided), or the geometric mean of the number of capabilities in different areas of metrology, that tends to favour those NMIs with more variety in their portfolios.
- On the other hand, once the appropriate CMC variable is selected, we have to decide whether to include this in levels or in logarithmic form in our model.

Therefore, firstly we test which one of the two alternative CMC measures is more suitable for our model. To that end, both have been used to estimate the national price level elasticity of demand through the preferred Heckman corrected setup – both models yield very similar results. This is shown by Table 16 which compares the preferred model B1 that uses probabilistic CMC variable, against model F1 which includes instead the geometric mean CMC variable.

	Мо	del B1	Model F1	
DV = log /	Coeff.	P-value	Coeff.	P-value

log PL	1.24 (0.09)	0.000	1.22 (0.08)	0.000	
log GDP	1.33 (0.09)	0.000	1.28 (0.08)	0.000	
СМС	-0.02 (0.04)	0.000	-0.01 (0.00)	0.000	
log D	-0.48 (0.02)	0.000	-0.49 (0.02)	0.000	
log POP	-0.17 (0.03)	0.000	-0.22 (0.03)	0.000	
<i>u</i> (t-1)	0.35 (0.05)	0.000	0.35 (0.05)	0.000	
u (t-2)	0.33 (0.05)	0.000	0.33 (0.04)	0.000	
u (t-3)	0.22 (0.05)	0.000	0.22 (0.04)	0.000	
λ	0.28 (0.18)	0.136	0.25 (0.14)	0.047	
	F-stat	P-value	F-stat	P-value	
time dummies	26.69	0.000	17.71	0.000	
R-squared	0.94		0.94		
Number of obs.	:	564	648		

 Table 16: Preferred model using the two different definitions of the CMC variable.

The fact that both variables produce almost equivalent results reflects that those NMIs that have a more comprehensive portfolio (greater number of services available to the user) are

also those that have a more complete portfolio (well distributed in all the areas of metrology). This was to be expected, because although some NMIs decide to focus on certain areas of metrology, it is usual to develop the measurement national infrastructure in all areas equally. In any case, the probabilistic measure of the CMC has been taken as a reference in the main analysis, since its interpretation is more immediate.

Once the CMC variable has been chosen, we need to address the question of whether the CMC variable should be introduced in the model in levels or logged. This affects the estimation results of the national price level elasticity substantially. Hence, it is essential to determine whether our specification in levels is appropriate or not. For that matter, once again, the preferred Heckman-corrected setup (model B1) is compared to an equivalent specification which only differs in that the CMC regressor is logged instead of in levels (model G1). In principal, running a link test should be a convenient way to detect any issue on the functional relation between the dependent variable and the regressor. However, as shown by Table 17, both specifications pass the test satisfactorily.

Model B1		Model G1	
Coeff.	P-value	Coeff.	P-value
1.03	0.000	1.03 (0.08)	0.000
0.00 (0.00)	0.768	0.00 (0.07)	0.784
0.94 648		0.94 648	
	Coeff. 1.03 (0.11) 0.00 (0.00)	Coeff. P-value 1.03 0.000 (0.11) 0.00 0.00 0.768 (0.00) 0.768	Coeff. P-value Coeff. 1.03 0.000 1.03 (0.11) (0.08) (0.08) 0.00 0.768 0.00 (0.00) 0.768 (0.07) 0.94 (0.07) (0.07)

Table 17: Link test for the preferred model using the two different definitions of the CMC variable

Hence, another complementary approach to decide whether the CMC variable should appear in levels or in logarithmic form is needed. Following Davidson and MacKinnon we can test for this by verifying if the fitted values of the alternative model have any explanatory power in the original model. Hence, if our choice of including the CMC variable in levels is correct, then the fitted values of the model that considers this variable in logarithmic form should be insignificant when added to our model. Table 18 shows the results for this test.

Мо	Model B1		del G1
Coeff.	P-value	Coeff.	P-value
-0.05	0.772	0.80	0.054
(0.77)		(0.41)	
0.50	0.470	1.19	0.032
(0.47)		(0.56)	
-0.07	0.548	-0.02	0.033
(0.55)		(0.01)	
-0.06	0.646	-0.35	0.040
(0.65)		(0.17)	
	Coeff. -0.05 (0.77) 0.50 (0.47) -0.07 (0.55) -0.06	Coeff. P-value -0.05 0.772 (0.77) 0.470 0.50 0.470 (0.47) 0.548 (0.55) 0.646	Coeff.P-valueCoeff. -0.05 0.772 0.80 (0.41) (0.77) 0.470 (1.19) (0.56) 0.470 0.470 1.09 (0.56) -0.07 0.548 -0.02 (0.01) -0.06 0.646 -0.35

log POP	-0.05	0.632	-0.12	0.119
	(0.63)		(0.08)	
	0.09	0.496	0.28	0.063
<i>u</i> (t-1)	(0.50)		(0.15)	
	0.00	0.996	0.21	0.068
<i>u</i> (t-2)	(1.00)		(0.11)	
	0.01	0.908	0.14	0.079
<i>u</i> (t-3)	(0.91)	0.900	(0.08)	0.079
λ	0.14	0.469	0.35	0.110
	(0.47)		(0.22)	
predicted for alternative	0.81	0.023	0.23	0.534
model	(0.36)		(0.37)	
	F-stat	P-value	F-stat	P-value
time dummies	0.28	0.995	0.37	0.979
R-squared	0.94		0.94	
Number of obs.		564		564

Table 18: Davidson-MacKinnon test.

The results are highly clarifying. The fitted values of the alternative model are not significant when the CMC variable is included in the model in levels. Conversely, when the CMC variable is entered in logarithmic form, none of the variables of interest are significant and the predicted values of the alternative are highly significant. This provides assurance that our chosen specification is adequate.

Negative binomial regression

Although the gravity model of trade has been widely used traditionally to predict and explain trade flows across countries, there is no consensus about the optimal method to solve the existence of zero flows. Especially when analysing trade patterns at the product level, the possibility that two countries do not trade in that specific good is much higher, and therefore the problem of the existence of zeros in the dataset is more acute.

Count models are an alternative approach to the Heckman selection model used in this paper. In these models the dependent variable is introduced in levels rather than logged. The negative binomial regression is a generalisation of the Poisson regression model which loosens the restrictive assumption that the variance is equal to the mean. We can apply this model to our dataset given that the dependent variable in levels shows significant overdispersion. Table 19 compares the estimation results for the static specification using OLS and the negative binomial regression²⁵.

	Мос	del A1	Mode	el H1
DV = log /	Coeff.	P-value	Coeff.	P- value
log PL	1.31 (0.10)	0.000	1.25 (0.13)	0.000
log GDP	1.15 (0.08)	0.000	1.28 (0.13)	0.000
СМС	-0.02 (0.00)	0.000	-0.05 (0.00)	0.000
log D	-0.44 (0.03)	0.000	-0.56 (0.04)	0.000
log POP	-0.20 (0.04)	0.000	0.33 (0.03)	0.000
	F-stat	P-value	Chi2	P- value
time dummies	7.13	0.000	112.70	0.000
Pseudo R- squared	0.81		0.	10
Number of obs.	ç	39	13	77

Table 19: Negative binomial regression estimation results.

²⁵ Note that neither dynamics of the system (i.e. including past realisations of the error term) nor the excess of zeroes (by considering for example a zero-inflated negative binomial regression model) are accounted by this model. The purpose of model H1 is to serve as a robustness check that the estimation procedure does not have a significant impact on the estimation results, and not as a complete alternative approach to the Heckman selection model used in the main body of the paper.

We can see how the price elasticity found is quite similar to the ones found by the models tested in the main body of this paper. This provides further assurance that our empirical results are sound.

Split sample test

The macroeconomic and commercial conditions that govern the exchange of goods at the international level today are not the same as in 2001. Likewise, the market for high precision calibration services may have undergo significant changes during the last two decades. Both factors may influence NPL's sales in other countries and in the UK. Indeed, it could be that the estimated price elasticity differs substantially from the actual one at present. In other words, our analysis comes across an important trade-off. As more years are added to the sample, we have more variability that allows us to find reliable estimates. However, it could be that the initial years had little to do with the current situation.

For this reason, a simple robustness test is presented below. It consists of the static specification (model A1) for a subsample from 2010 onwards. We estimate the static model instead of the preferred Heckman corrected one because as soon as the dynamics of the system are taken into account, we inevitably lose observations; this fact plus the reduction in the sample will leave us with too few observations to play with.

Therefore, the objective of this robustness test is to compare the estimates from both static models and verify that both estimates are comparable. Table 20 shows the estimation results for the full sample static model (model A1) and the restricted sample static model (model I1).

	Mod	el A1	Model I1		
DV = log /	Coeff.	P- value	Coeff.	P- value	
log PL	1.31 (0.10)	0.000	1.23 (0.14)	0.000	
log GDP	1.15 (0.08)	0.000	1.27 (0.12)	0.000	
СМС	-0.02 (0.00)	0.000	-0.02 (0.00)	0.000	
log D	-0.44 (0.03)	0.000	-0.47 (0.04)	0.000	
log POP	-0.20 (0.04)	0.000	-0.24 (0.05)	0.000	

	F-stat	P- value	F-stat	P- value
time dummies	7.13	0.000	1.60	0.121
R-squared	0.	81	0.80	
Number of obs.	93	39	52	24

Table 20: Split test for the static model.

It can be seen how both estimates for the coefficient of the national price level regressor are very similar and within the confidence interval of the other. On the other hand, the year dummies are not jointly significant (and in fact individually), which could show that the years in the second half of the sample (after the huge shock of 2008 and 2009) is more comparable to each other.

In any case, this simple check points to the validity of the estimates obtained.

Income as the dependent variable

A fundamental aspect of the econometric analysis is the choice of the dependent variable. We have two possible variables to use as our dependent variable: the number of invoices and the income generated (both normalised by population to ensure comparability across countries).

The objective of this robustness test is to check the impact on the estimation results of using income instead of the preferred dependent variable, the number of invoices. To that end, the following specification is tested:

$$\log R_{i,t} = \beta_0 + \beta_1 \log PL_{i,t} + \beta_2 \log GDP_{i,t} + \beta_3 CMC_i + \beta_4 \log D_i + \beta_5 \log POP_i + \beta_5 \log AvPrice_{i,t} + \gamma_t Y_t + \varepsilon_{i,t}$$

where $R_{i,t}$ is income generated from customers of country *i* in year *t* normalised by the population of the country, $PL_{i,t}$ is the national price level, $GDP_{i,t}$ is the gross domestic product per capita, CMC_i is a continuous index that rates the measurement capabilities of the country, D_i is the distance between the country and the UK, POP_i is the population of the country, $AvPrice_{i,t}$ is the average income per invoice, Y_t is a year dummy variable, and $\varepsilon_{i,t}$ is the error term which is assumed to be independently and identically distributed as a normal distribution with mean of 0 and finite variance.

Note that this specification differs in two ways from the one considered in the main body of the document: (1) we are using income as the dependent variable instead of the number of invoices, and (2) we are including the average price per invoice as a regressor. The reason for including this other regressor is to get the Q component in income; i.e. given that $R = P \cdot Q$, we know that:

$$\log R_{i,t} = \log P_t + \log Q_{i,t}$$

Hence, by adding the average price per invoice to the regressors we can approximate $\log Q_{i,t}$.

	Mod	el A1	Mod	el J1
DV = log <i>l</i>	Coeff.	P- value	Coeff.	P- value
log PL	1.31 (0.10)	0.000	1.23 (0.10)	0.000
log GDP	1.15 (0.08)	0.000	1.09 (0.08)	0.000
СМС	-0.02 (0.00)	0.000	-0.01 (0.00)	0.000
log D	-0.44 (0.03)	0.000	-0.36 (0.03)	0.000
log POP	-0.20 (0.04)	0.000	0.70 (0.03)	0.000
log AvPrice	•		1.01 (0.04)	0.000
	F-stat	P- value	F-stat	P- value
time dummies	7.13	0.000	7.04	0.000
R-squared	0.81		0.	80
Number of obs.	93	39	9(09

We can compare the estimation results for the static version of the model both using the number of invoices (model A1) and income (model J1)

Table 21: Static model using both available dependent variables.

Therefore, it is found that both estimates are very similar for all regressors of interest.

Annex B: Testing for endogeneity.

This annex discusses the alternative to the Hausman test proposed by . This method is used in section 4.3 to assess the whether the regressor of interest in our model, the price level, is correlated with the error term. If so, any the estimation results would be biased.

Firstly, the computation of the test proposed by Mundlak is presented. Then the intuition behind it is described.

In panel data analysis, the decision of using the fixed effects estimator or the random effects estimator depends on how time-invariant unobservables are related to the variables in the model. To assess this, Mundlak's test follows three steps:

- 1. The panel-level average of the time-varying covariates are computed.
- 2. The random effects estimator is used to regress the covariates and the panel-level means generated in the first step against the dependent variable.
- 3. Test whether the panel-level means are jointly zero.

If the test rejects the null hypothesis that the coefficients are jointly zero, it suggests that there is correlation between the time-invariant unobservables and the regressors, namely, the fixed-effects assumptions are satisfied. On the contrary, If the test does not reject the null hypothesis that the generated panel-level mean regressors are zero, there is evidence of no correlation between the time-invariant unobservable and the regressors; that is, the random effects assumptions are satisfied.

The intuition behind Mundlak's approach is straightforward. Suppose a linear panel-data model given by equation B.1:

$$y_{it} = \alpha_i + x_{it}\beta + \varepsilon_{it} \tag{B.1}$$

Where the index *i* denotes the panel unit and the index *t* time. y_{it} is the outcome of interest, x_{it} is the set of regressors, ε_{it} is the time-varying unobservable (idiosyncratic error), and α_i is the time-invariant unobservable (unobserved heterogeneity).

Now, the mean of α_i conditional on the time-invariant part of the regressors is given by expression B.2:

$$\alpha_i = \bar{x}_i \gamma + \nu_i \Leftrightarrow \mathbf{E}(\alpha_i | x_i) = \bar{x}_i \gamma \tag{B.2}$$

Where \bar{x}_i is the panel-level mean of x_{it} , and v_i is a time-invariant unobservable that is uncorrelated to the regressors.

Hence, if $\gamma = 0$, α_i and the covariates are uncorrelated. This is precisely what the Mundlak method tests. This can be seen by substituting B.2 into B.1:

$$y_{it} = \alpha_i + x_{it}\beta + \varepsilon_{it} = \overline{x_i}\gamma + \nu_i + x_{it}\beta + \varepsilon_{it} \Leftrightarrow \mathbf{E}(y_{it}|x_{it}) = x_{it}\beta + \overline{x_i}\gamma$$
(B.3)

Where the last relation relies on the fact that the regressors and the unobservables are mean independent. Therefore, Mundlak's approach tests the null hypothesis of $\gamma = 0$.

Annex C: Detailed summary statistics

Table 22 provides detailed *overall, between* and *within* summary statistics for all the variables used in the analysis. Variables in level are abbreviated in capital letters; variables in logarithmic form are lowercased.

Variable	Variation	Mean	Std. Dev	Min	Мах	Obs.
	overall		8.0E-06	0.0	8.6E-05	N =1717
1	between	2.4E-06	6.9E-06	7.5E-10	5.8E-05	n =101
	within		4.2E-06	-3.9E-05	6.6E-05	T =17
	overall		0.3	0.1	1.4	N =1649
PL	between	0.5	0.3	0.2	1.2	n =97
	within		0.1	0.2	1.0	T =17
	overall		1.4E+04	4.1E+02	9.7E+04	N =1649
GDP	between	1.5E+04	1.3E+04	6.2E+02	7.0E+04	n =97
	within		4.9E+03	-2.3E+03	4.7E+04	T =17
	overall		16.7	0	77.6	N =1394
CMC	between	11.6	16.8	0	77.6	n =82
	within		0.0	11.6	11.6	T =17
	overall		3933.0	185.8	19147.1	N =1683
D	between	5167.5	3951.9	185.8	19147.1	n =99
	within		0	5167.5	5167.5	T =17
	overall		1.8E+08	3.3E+04	1.3E+09	N =1717
POP	between	5.9E+07	1.8E+08	3.3E+04	1.3E+09	n =101
	within		0	5.9E+07	5.9E+07	T =17
	overall		2.1	-20.3	-9.4	N =1025
i	between	-14.1	2.1	-18.7	-9.8	n =101
	within		0.6	-16.7	-11.4	T-bar =10.15
	overall		0.5	-2.1	0.4	N =1649
pl	between	-0.7	0.5	-1.6	0.2	n =97
	within		0.2	-1.7	0.0	T =17
	overall		1.1	6.0	11.5	N =1649
gdp	between	9.2	1.0	6.4	11.1	n =97
	within		0.3	8.3	10.2	T =17
d	overall	8.2	1.0	5.2	9.9	N =1683
u	between	0.2	1.0	5.2	9.9	n =99

	Within		0	8.2	8.2	T =17
	overall		1.9	10.4	21.0	N =1717
рор	between	16.3	1.9	10.4	21.0	n =101
	within		0	16.3	16.3	T =17

Table 23: Summary statistics.

Annex D: Stata outputs

Model A1

-

Estimation results

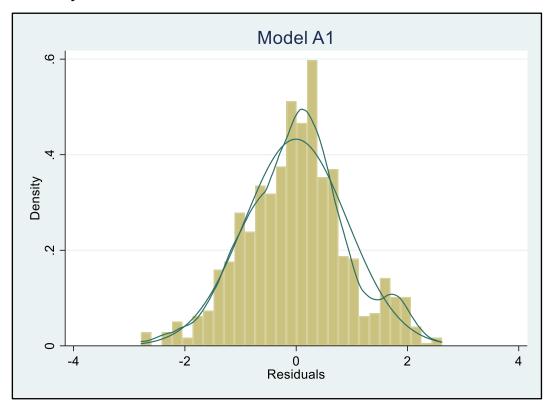
Linear regression	Nur	mber of obs	s =	939		
-			F(21, 917)		=	180.94
			Pro	ob > F	=	0.0000
			R-:	squared	=	0.8066
			Roo	ot MSE	=	.9328
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
LnWB_PRL	1.314002	.1028418	12.78	0.000	1.112169	1.51583
LnWB_GDPpcgbp	1.153907	.0789686	14.61	0.000	.9989267	1.30888
BIPM_CMCs	0199687	.0026864	-7.43	0.000	0252409	014696
LnCEPII_dist	4394035	.0329408	-13.34	0.000	5040515	374755
LnISO_Population	2033567	.0354115	-5.74	0.000	2728538	133859
YEAR						
2002	1.001832	.1848393	5.42	0.000	.6390748	1.36458
2003	.9818643	.194761	5.04	0.000	.5996353	1.36409
2004	1.21669	.1878141	6.48	0.000	.848095	1.58528
2005	1.40412	.1895101	7.41	0.000	1.032196	1.77604
2006	1.141488	.1852813	6.16	0.000	.7778637	1.50511
2007	1.264889	.1789166	7.07	0.000	.913755	1.61602
2008	.6823026	.1995518	3.42	0.001	.2906713	1.07393
2009	.5747391	.1848468	3.11	0.002	.2119672	.937510
2010	.6944648	.187167	3.71	0.000	.3271395	1.0617
2011	.6846496	.197213	3.47	0.001	.2976083	1.07169
2012	.65513	.1865352	3.51	0.000	.2890444	1.021210
2013	.6602773	.1848684	3.57	0.000	.297463	1.02309
2014	.725009	.1901153	3.81	0.000	.3518973	1.09812
2015	.7314882	.184208	3.97	0.000	.3699701	1.09300
2016	.4271422	.1871181	2.28	0.023	.0599127	.794371
2017	.2716416	.1943123	1.40	0.162	1097069	.6529
cons	-18.15977	1.130125	-16.07	0.000	-20.3777	-15.94184

Wald test year dummies

(1)	2002.YEAR = 0	
(2)	2003.YEAR = 0	
(3)	2004.YEAR = 0	
(4)	2005.YEAR = 0	
(5)	2006.YEAR = 0	
(6)	2007.YEAR = 0	
(7)	2008.YEAR = 0	
(8)	2009.YEAR = 0	
(9)	2010.YEAR = 0	
(10)	2011.YEAR = 0	
(11)	2012.YEAR = 0	
(12)	2013.YEAR = 0	
(13)	2014.YEAR = 0	
(14)	2015.YEAR = 0	
(15)	2016.YEAR = 0	
(16)	2017.YEAR = 0	
	F(16, 917) =	7.13
	Prob > F =	0.0000

Link test

Source	SS	df	MS		er of obs		939
					936)	=	2093.06
Model	3535.3053	2	1767.65265	Prob	> F	=	0.0000
Residual	790.482037	936	.844532091		uared	=	0.8173
				- Adj	R-squared	: =	0.8169
Total	4325.78733	938	4.61171357	Root	MSE	=	.91898
LnInvoices~p	Coef.	Std. Err.	t	P> t	[95% 0	Conf.	Interval]
LnInvoices~p _hat	Coef. 1.073418	Std. Err.		P> t 0.000	[95% C		Interval] 1.456159
			5.50		-	766	


Ramsey RESET test

```
Ramsey RESET test using powers of the fitted values of LnInvoicesPop
Ho: model has no omitted variables
F(3, 914) = 12.02
Prob > F = 0.0000
```

Serial correlation test

Source	SS	df	MS	Number of obs F(1, 800)	=	802 1074.71
Model	380.427527	1	380.427527	Prob > F	=	0.0000
Residual	283.186566	800	.353983208	R-squared	=	
Total	663.614094	801	.828482014	Adj R-squared Root MSE	=	0.5727 .59496
resid	Coef.	Std. Err.	t P	?> t [95% Co	nf.	Interval]
resid L1.	.7566804	.0230817	32.78 0	0.000 .711372	6	.8019883
_cons	.0164921	.0210185	0.78 0	.433024765	8	.0577499

Normality of the residuals

Mundlak test

Random-effects GLS	Num	ber of ob	s =	939			
Group variable: ID	-0			ber of gr		81	
R-sq:		Obs	per grou				
within = 0.32		F 0	min =	1			
between = 0.86			avg =	11.6			
overall = 0.80			max =	17			
000000000000000000000000000000000000000						1,	
			Wal	d chi2(23	3) = 12	42.79	
$corr(u_i, X) = 0$		b > chi2	•	.0000			
corr(u_1, x) = 0	(ussumed)		110		- 0		
		(5	td Err	adjusted	for 81 clust	ers in TD)	
		(3	cu. Lii.	aujustet			
		Robust					
LnInvoicesPop	Coef.	Std. Err.	z	P> z	[95% Conf.	Intervall	
		Sta. Err.	2	12141	[55% com.	Incervarj	
LnWB_PRL	043811	.1883329	-0.23	0.816	4129366	.3253146	
LnWB_GDPpcgbp	.8526772	.2162268	3.94	0.000	.4288805	1.276474	
BIPM CMCs	0149248	.0092068	-1.62	0.105	0329698	.0031203	
LnCEPII_dist	3988639	.1181946	-3.37	0.001	630521	1672068	
LnISO_Population	3157267	.1023604	-3.08	0.002	5163493	115104	
LnWB_PRLmean	1.830448	.3376485	5.42	0.000	1.168669	2.492226	
LnWB_GDPpcgbpmean	1043759	.2546585	-0.41	0.682	6034973	.3947455	
climb_op-pegopiliean	1045755	.2340385	-0.41	0.002	0054575		
YEAR							
2002	.9878086	.1098965	8.99	0.000	.7724155	1.203202	
2002	1.00638	.1266705	7.94	0.000	.7581108	1.25465	
2005	1.182101	.1288598	9.17	0.000	.92954	1.434661	
2004	1.389886	.1268374	10.96	0.000	1.141289	1.638482	
2005	1.227675	.1283833	9.56	0.000	.9760485	1.479302	
2007	1.245081	.1285855	9.68	0.000	.9930447	1.497117	
2007	1.050825	.1285922	8.09	0.000	.7961355	1.305515	
2008	1.007699	.1465433	6.88	0.000	.7204791	1.294918	
2010	1.21944	.1493779	8.16	0.000	.9266644	1.512215	
2011	1.190064	.1555207	7.65	0.000	.8852492	1.494879	
2012	1.158128	.1508161	7.68	0.000	.8625342	1.453722	
2013	1.223071	.1602709	7.63	0.000	.908946	1.537196	
2014	1.218597	.14362	8.48	0.000	.9371073	1.500087	
2015	1.138984	.150618	7.56	0.000	.8437777	1.43419	
2016	1.008738	.192704	5.23	0.000	.6310451	1.386431	
2017	.986852	.2419489	4.08	0.000	.512641	1.461063	
_cons	-12.87396	2.407382	-5.35	0.000	-17.59234	-8.15558	
sigma_u	.78784645						
sigma_e	.52782908				• •		
rho	.69020147	(fraction	of varia	nce due t	:o u_i)		

- (1) LnWB_PRLmean = 0
 (2) LnWB_GDPpcgbpmean = 0
 - chi2(2) = 29.43 Prob > chi2 = 0.0000

Model A2

Ē

Estimation results

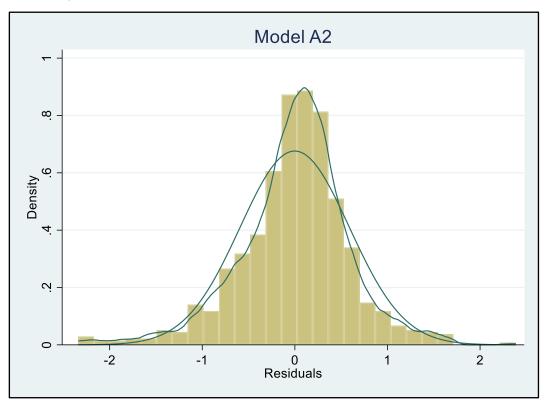
Linear regression				mber of obs 21, 779)		801 401.90
				21, 779) ob > F		0.0000
				squared		0.9167
				ot MSE	-	.59722
			KO		-	. 55722
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LnWB_PRL	1.24861	.0806192	15.49	0.000	1.090354	1.406867
LnWB_GDPpcgbp	1.233787	.0651217	18.95	0.000	1.105953	1.361622
BIPM_CMCs	0203153	.001707	-11.90	0.000	0236662	0169645
LnCEPII_dist	4545122	.0181831	-25.00	0.000	4902059	4188186
LnISO_Population	1983297	.0235201	-8.43	0.000	2445	1521594
U						
L1.	.7585594	.0274461	27.64	0.000	.7046824	.8124364
YEAR						
2003	0478824	.1351532	-0.35	0.723	3131901	.2174252
2004	.2038653	.1333478	1.53	0.127	0578982	.4656288
2005	.3514206	.1253772	2.80	0.005	.1053034	.5975379
2006	.1823697	.1333442	1.37	0.172	0793869	.4441263
2007	.1840757	.1298663	1.42	0.157	0708537	.439005
2008	1434227	.1375788	-1.04	0.298	4134918	.1266464
2009	4572319	.1267269	-3.61	0.000	7059986	2084653
2010	2710897	.1276832	-2.12	0.034	5217336	0204458
2011	4548417	.1404845	-3.24	0.001	7306147	1790687
2012	3545824	.121594	-2.92	0.004	5932731	1158916
2013	3256319	.1303402	-2.50	0.013	5814915	0697722
2014	3018151	.1275169	-2.37	0.018	5521326	0514976
2015	2577654	.1246292	-2.07	0.039	5024142	0131165
2016	6442882	.1256325	-5.13	0.000	8909066	3976698
2017	8048086	.1420982	-5.66	0.000	-1.083749	5258679
_cons	-17.88848	.9017248	-19.84	0.000	-19.65858	-16.11838

Wald test year dummies

(1)	2003.YEAR = 0
(2)	2004.YEAR = 0
(3)	2005.YEAR = 0
(4)	2006.YEAR = 0
(5)	2007.YEAR = 0
(6)	2008.YEAR = 0
(7)	2009.YEAR = 0
(8)	2010.YEAR = 0
(9)	2011.YEAR = 0
(10)	2012.YEAR = 0
(11)	2013.YEAR = 0
(12)	2014.YEAR = 0
(13)	2015.YEAR = 0
(14)	2016.YEAR = 0
(15)	2017.YEAR = 0
	F(15, 779) = 11.23
	Prob > F = 0.0000

Link test

	of obs =		MS	df	SS	Source
		F(2, Prob	1623.04746	2	3246.09492	Model
				-		
0.9225	red =	R-squ	.341957099	798	272.881765	Residual
0.9223	squared =	Adj R				
.58477	ISE =	Root I	4.39872085	800	3518.97668	Total
	[95% Conf.	•> t	tı	Std. Err.	Coef.	LnInvoices~p
Interval]	1	• •				
	1.071635	9.000	10.72	.1223507	1.311802	_hat
Interval] 1.551969 .0189491	-			.1223507 .0041919	1.311802 .0107206	_hat _hatsq


Ramsey RESET test

Ramsey	RESET test using powers o Ho: model has no omitted	f the fitted values of LnInvoicesPop variables
	F(3, 776) =	6.67
	Prob > F =	0.0002

Serial correlation test

Source	SS	df	MS	Number of obs F(1, 714)	=	716 62.76
Model	19.7176045	1	19.7176045	Prob > F	=	0.0000
Residual	224.329231	714	.314186598	R-squared Adj R-squared	=	
Total	244.046835	715	.341324245	Root MSE	=	.56052
resid	Coef.	Std. Err.	t P	?> t [95% Co	nf.	Interval]
resid						
L1.	2875954	.0363035	-7.92 0	.000358869	8	216321
_cons	.0056965	.0209481	0.27 0	.786035430	7	.0468237

Normality of the residuals

Mundlak test

Random-effects GLS	regression		Num	ber of obs	=	801
Group variable: ID	regression			ber of gro		69
Group variable. ID			Num	Del ol gro	ups =	69
Pesai			Obc	non gnoun		
R-sq: within = 0.14	101		005	per group	min =	1
between = 0.98						
					avg =	11.6
overall = 0.93	169				max =	16
			1.1-1	d		
	(d chi2(23)		175.47
$corr(u_i, X) = 0$	(assumed)		Pro	b > chi2	= 6	0000
					for co alway	tone in TD)
		0	sta. Err.	adjusted	for 69 clust	ters in ID)
		Robust				
LnInvoicesPop	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
LIIIIVOICESFOP		564. 211.	2	F7[2]	[95% com	. Incervarj
LnWB_PRL	1.002301	.1695931	5.91	0.000	.6699046	1.334697
LnWB_GDPpcgbp	1.241972	.1848001	6.72	0.000	.8797707	1.604174
BIPM CMCs	0204574	.002707	-7.56	0.000	025763	0151518
LnCEPII dist	450655	.0306665	-14.70	0.000	5107603	3905497
LnISO_Population	1987053	.0354847	-5.60	0.000	268254	1291566
inition_ropulation	.150/055		2.00	0.000		
U						
L1.	.7534812	.0435316	17.31	0.000	.6681608	.8388015
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0455510	17.01	0.000		.0500015
LnWB_PRLmean	.2766888	.2246772	1.23	0.218	1636705	.717048
LnWB_GDPpcgbpmean	021668	.1930202	-0.11	0.911	3999806	.3566446
YEAR						
2003	0452043	.1455296	-0.31	0.756	330437	.2400284
2004	.203408	.127875	1.59	0.112	0472224	.4540383
2005	.3543306	.1168089	3.03	0.002	.1253893	.583272
2006	.1875456	.1353537	1.39	0.166	0777427	.4528339
2007	.1839279	.12554	1.47	0.143	062126	.4299819
2008	1056411	.1415592	-0.75	0.456	3830921	.1718099
2009	401968	.1575953	-2.55	0.011	710849	0930869
2010	2021393	.1660991	-1.22	0.224	5276875	.1234088
2011	3824271	.156228	-2.45	0.014	6886284	0762258
2011	2894103	.1475682	-1.96	0.050	5786386	000182
2012	2576486	.1636314	-1.57	0.115	5783603	.0630631
2013	2524405	.141267	-1.79	0.074	5293187	.0244376
2014	2269928	.1714713	-1.32	0.186	5630704	.1090847
2013	5914459	.19774	-2.99	0.003	9790092	2038826
2018	7341057	.2287121	-2.99	0.001	-1.182373	2858383
201/	/54105/	.220/121	-2.21	0.001	1.102010	.200000
_cons	-17.79782	1.296759	-13.72	0.000	-20.33942	-15.25622
sigma_u	0					
sigma_e	.49783632					
rho	0	(fraction	of varia	nce due to	u_i)	

```
( 1) LnWB_PRLmean = 0
( 2) LnWB_GDPpcgbpmean = 0
```

```
chi2( 2) = 1.57
Prob > chi2 = 0.4568
```

Model A3

Ē

Estimation results

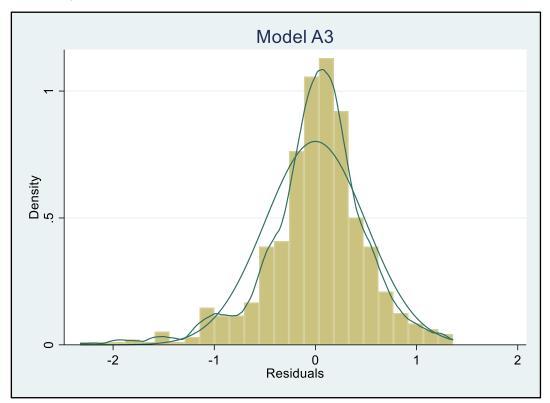
Linear regression			Nu	mber of obs	s =	648
			F (21, 626)	=	487.39
			Pro	ob > F	=	0.0000
			R-:	squared	=	0.9373
				ot MSE	=	.5058
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
LnWB_PRL	1.192111	.0734575	16.23	0.000	1.047858	1.336364
LnWB_GDPpcgbp	1.2537	.06578	19.06	0.000	1.124524	1.382876
BIPM_CMCs	0202347	.0016867	-12.00	0.000	023547	0169223
LnCEPII_dist	4672374	.0161809	-28.88	0.000	4990128	4354621
LnISO_Population	2025394	.0248424	-8.15	0.000	2513241	1537548
U						
L1.	.3603281	.0452495	7.96	0.000	.2714689	.4491873
L2.	.3347188	.0424106	7.89	0.000	.2514346	.418003
L3.	.2171507	.0407321	5.33	0.000	.1371626	.2971389
YEAR						
2005	.1809868	.0957039	1.89	0.059	0069527	.3689263
2006	0674422	.1123515	-0.60	0.549	2880737	.1531894
2007	0468298	.1138695	-0.41	0.681	2704422	.1767826
2008	4005389	.1108125	-3.61	0.000	6181481	1829298
2009	628931	.1036749	-6.07	0.000	8325238	4253382
2010	4978494	.1060187	-4.70	0.000	7060447	289654
2011	7054619	.1182694	-5.96	0.000	9377148	473209
2012	6617262	.103049	-6.42	0.000	8640897	4593626
2013	5566118	.1134433	-4.91	0.000	7793874	3338362
2014	5296157	.100073	-5.29	0.000	7261351	3330964
2015	4985596	.0977432	-5.10	0.000	690504	3066153
2016	8685235	.1078369	-8.05	0.000	-1.080289	6567576
2017	-1.157288	.1141327	-10.14	0.000	-1.381418	9331588
cons	-17.70103	.949147	-18.65	0.000	-19.56493	-15.83713

Wald test year dummies

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 626) = 18.59	
	Prob > F = 0.00	00

Link test

= 6			MS	df	SS	Source
= 5172. = 0.00	,		1271.6171	2	2543.23431	Model
				-	158.580787	Residual
			.24586168	645	158.580/8/	Residual
= 0.94		•				
= .495	MSE =	5 Root	4.1759120	647	2701.8151	Total
						I
f. Interva	[95% Conf.	P> t	t	Std. Err.	Coef.	LnInvoices~p
f. Interva 1.2587	[95% Conf. .8180236	P> t 0.000	t 9.25	Std. Err.	Coef. 1.038406	LnInvoices~p _hat
	-					


Ramsey RESET test

Ramsey RESET test using powers of the fitted values of LnInvoicesPop Ho: model has no omitted variables F(3, 623) = 1.64 Prob > F = 0.1785

Serial correlation test

Source	SS	df	MS	Number of obs F(1, 590)	=	592 0.56
Model	.138968391	1	.138968391	Prob > F	=	0.4533
Residual	145.585577	590	.246755215	R-squared Adj R-squared	=	0.0010 -0.0007
Total	145.724546	591	.246572835	Root MSE	=	.49674
resid	Coef.	Std. Err.	tF	P> t [95% Co	onf.	Interval]
resid						
L1.	0309829	.0412855	-0.75	9.453112067	73	.0501015
_cons	0021414	.0204165	-0.10	0.917042239	93	.0379565

Normality of the residuals

Mundlak test

Random-effects GLS	regression		Num	ber of obs	=	648
Group variable: ID	regression			ber of gro		54
Group variable. 10			Num	ber of gro	up3 -	24
R-sq:			Ohs	per group		
within = 0.13	372		003	per group	min =	2
between = 0.98					avg =	12.0
overall = 0.9					avg - max =	12.0
overall = 0.9	5/5				max =	14
			Ma 1	d abi 2(22)		070 20
	(accurred)			d chi2(23) b > chi2		072.38
$corr(u_i, X) = 0$	(assumed)		Pro	D > Ch12	=	0.0000
		15			for 54 alue	tone in TD)
		(3	sta. Err.	adjusted	for 54 clus	ters in ID)
		Robust				
LnInvoicesPop	Coef.	Std. Err.	z	P> z	LOEV Conf	. Interval]
LIIIIVOICESPOP	coer.	Stu. Enr.	2	F7[4]	[95% COII	. intervalj
 LnWB_PRL	.7407621	.2699252	2.74	0.006	.2117185	1.269806
LnWB_GDPpcgbp	1.369068	.2217878	6.17	0.000	.9343719	1.803764
BIPM_CMCs	0205096	.0017628	-11.63	0.000	0239647	0170545
LnCEPII_dist	4595426	.0170855	-26.90	0.000	4930296	4260556
LnISO_Population	2032983	.0236171	-28.90	0.000	249587	1570096
LHISO_POPULATION	2052965	.02501/1	-0.01	0.000	249567	15/0090
U	2572000	0470506	7 45	0.000	2624475	4512002
L1.	.3573989	.0479506	7.45	0.000	.2634175	.4513803
L2.	.3311569	.0464437	7.13	0.000	.2401289	.4221849
L3.	.2150397	.0348896	6.16	0.000	.1466574	.2834221
	40604.00	2064704	4 67		0044600	4 076407
LnWB_PRLmean	.4960139	.2961701	1.67	0.094	0844689	1.076497
LnWB_GDPpcgbpmean	1394806	.211445	-0.66	0.509	5539051	.2749439
VEAD						
YEAR	4700467					
2005	.1788467	.0887283	2.02	0.044	.0049423	.352751
2006	0756216	.1177225	-0.64	0.521	3063534	.1551102
2007	0610247	.1183016	-0.52	0.606	2928916	.1708422
2008	3625741	.1128963	-3.21	0.001	5838467	1413015
2009	5726524	.1534909	-3.73	0.000	8734891	2718157
2010	4236139	.1710912	-2.48	0.013	7589464	0882813
2011	6247922	.1788641	-3.49	0.000	9753594	274225
2012	5944423	.1352508	-4.40	0.000	859529	3293555
2013	4930519	.1771572	-2.78	0.005	8402735	1458302
2014	4999567	.1473325	-3.39	0.001	7887232	2111902
2015	5094565	.1776411	-2.87	0.004	8576266	1612864
2016	8599917	.2316738	-3.71	0.000	-1.314064	4059194
2017	-1.125954	.2506322	-4.49	0.000	-1.617184	6347235
_cons	-17.51005	.8432178	-20.77	0.000	-19.16273	-15.85738
sigma_u	0					
sigma_e	.45729096					
rho	0	(fraction	of varia	nce due to	u_i)	

- (1) LnWB_PRLmean = 0
 (2) LnWB_GDPpcgbpmean = 0

```
chi2( 2) = 3.97
Prob > chi2 = 0.137
                         0.1374
```

Model B1

1,134 265.44
265.44
265.44
265.44
265.44
265.44
265.44
265.44
0.0000
0.4389
nf. Interval]
5 1.289409
1 1.083289
4 .0463794
21237421
9.5671801
3.255345
35641774
9.4507062
9.562695
40891604
2.1715033
9.0809304
52006145
21698919
35949383
34581685
32514801
52890427
20191576
84587213
76640974
9 -8.860996

Partial effects at the average

	1	Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval
LnWB_PRL	.180655	.042541	4.25	0.000	.0972762	.2640337
LnWB_GDPpcgbp	.1801549	.027308	6.60	0.000	.1266322	.2336776
BIPM_CMCs	.0035923	.002636	1.36	0.173	0015741	.008758
LnCEPII_dist	0525825	.0147025	-3.58	0.000	0813988	023766
LnISO_Population	.0910674	.0147548	6.17	0.000	.0621486	.119986
рU						
L1.	0805273	.068542	-1.17	0.240	2148672	.053812
L2.	2424284	.0685868	-3.53	0.000	3768561	108000
L3.	0344484	.0634349	-0.54	0.587	1587784	.089881
YEAR						
2005	0017894	.0210136	-0.09	0.932	0429753	.039396
2006	0760453	.0351423	-2.16	0.030	144923	007167
2007	0452918	.0360727	-1.26	0.209	115993	.025409
2008	0505358	.0315134	-1.60	0.109	112301	.011229
2009	102343	.043293	-2.36	0.018	1871957	017490
2010	094581	.0410409	-2.30	0.021	1750196	014142
2011	20384	.0583359	-3.49	0.000	3181763	089503
2012	1654843	.0544368	-3.04	0.002	2721785	058790
2013	1140402	.0462605	-2.47	0.014	2047092	023371
2014	1176642	.0433788	-2.71	0.007	202685	032643
2015	069973	.0403365	-1.73	0.083	1490312	.009085
2016	1680028	.0560996	-2.99	0.003	2779559	058049
2017	2357136	.0695933	-3.39	0.001	3721139	099313

Average partial effects

		Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
LnWB_PRL	.1734383	.0372017	4.66	0.000	.1005244	.2463523
LnWB_GDPpcgbp	.1729583	.0146125	11.84	0.000	.1443182	.2015983
BIPM_CMCs	.0034488	.0027168	1.27	0.204	001876	.0087736
LnCEPII_dist	050482	.0134677	-3.75	0.000	0768782	024085
.nISO_Population	.0874295	.0099696	8.77	0.000	.0678894	.1069690
pU						
L1.	0773104	.0644451	-1.20	0.230	2036205	.048999
L2.	2327441	.0624625	-3.73	0.000	3551685	110319
L3.	0330723	.0607205	-0.54	0.586	1520822	.085937
YEAR						
2005	0038493	.0452656	-0.09	0.932	0925682	.084869
2006	1065187	.0452592	-2.35	0.019	1952252	017812
2007	0723834	.0514069	-1.41	0.159	173139	.028372
2008	0787425	.0460895	-1.71	0.088	1690764	.011591
2009	1311629	.0475774	-2.76	0.006	2244129	03791
2010	1242222	.0467954	-2.65	0.008	2159394	03250
2011	2059109	.0472073	-4.36	0.000	2984355	113386
2012	1803668	.0478305	-3.77	0.000	2741128	086620
2013	1411784	.047801	-2.95	0.003	2348666	047490
2014	144183	.0455096	-3.17	0.002	2333802	054985
2015	1003141	.0489906	-2.05	0.041	196334	004294
2016	1821243	.0482729	-3.77	0.000	2767375	08751
2017	2254859	.0499993	-4.51	0.000	3234828	12748

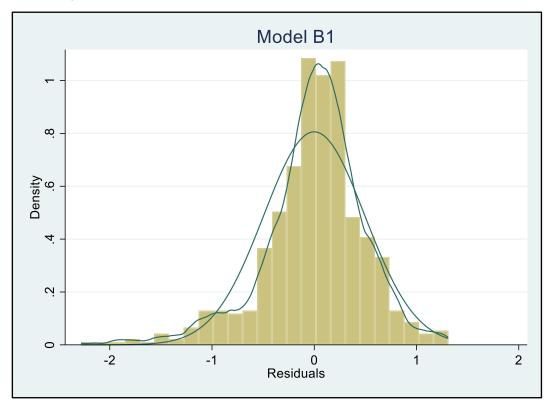
Linear regression			Nui	mber of obs	s =	648
-			F(22, 625)	=	469.31
			•	ob > F	=	0.0000
				squared	=	0.9380
				ot MSE	=	.50351
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
LnWB_PRL	1.238868	.0765929	16.17	0.000	1.088457	1.389278
LnWB_GDPpcgbp	1.334916	.0755519	17.67	0.000	1.18655	1.483283
BIPM_CMCs	0203664	.00168	-12.12	0.000	0236655	0170673
LnCEPII_dist	475067	.0159356	-29.81	0.000	5063609	4437732
LnISO_Population	1712076	.028077	-6.10	0.000	2263442	116071
U						
L1.	.347696	.0455758	7.63	0.000	.2581957	.4371962
L1. L2.	.3308802	.0429688	7.70	0.000	.2464996	.4152609
L2. L3.	.216301	.0415533	5.21	0.000	.2404990	.2979021
LJ.	.210501	.0415555	5.21	0.000	.1347	.2979021
lambda	.283928	.142488	1.99	0.047	.0041147	.5637413
YEAR						
2005	.1819607	.0976722	1.86	0.063	0098448	.3737662
2006	0920482	.1124853	-0.82	0.413	312943	.1288466
2007	0619161	.1138929	-0.54	0.587	2855751	.1617429
2008	4259395	.1123042	-3.79	0.000	6464788	2054001
2009	6681301	.1053219	-6.34	0.000	8749577	4613025
2010	5348193	.104634	-5.11	0.000	7402961	3293426
2011	7635247	.1197042	-6.38	0.000	9985959	5284536
2012	7195368	.105622	-6.81	0.000	9269538	5121199
2013	6083887	.1154341	-5.27	0.000	8350744	3817029
2014	5725413	.1015011	-5.64	0.000	7718658	3732168
2015	5334067	.0992389	-5.37	0.000	7282888	3385247
2016	9362018	.1108656	-8.44	0.000	-1.153916	7184875
2017	-1.238251	.1201225	-10.31	0.000	-1.474143	-1.002358
_cons	-18.94411	1.10697	-17.11	0.000	-21.11794	-16.77027

Wald test year dummies

(
(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 625) =	17.87
	Prob > F =	0.0000

Link test

MS	df	SS	Source
1272.51564	2	2545.03128	Model
.243075685	645	156.783817	Residual
4.17591200	647	2701.8151	Total
t	Std. Err.	Coef.	LnInvoices~p
9.26	.1115759	1.032845	hat
0.30	.0038752	.0011452	
0.29	.792917	.2307861	cons
.51564 075685 591200 t .26 .30	.2430 4.17! 9 0	2 1272 645 .2430 647 4.179 Std. Err. .1115759 9 .0038752 0	2545.03128 2 1272 156.783817 645 .2430 2701.8151 647 4.179 Coef. Std. Err. 1.032845 .1115759 9 .0011452 .0038752 0


Ramsey RESET test

Ramsey	RESET test using powers o Ho: model has no omitted	f the fitted values of LnInvoicesPo variables
	F(3, 622) =	1.52
	Prob > F =	0.2086

Serial correlation test

Source	SS	df	MS	Number of obs F(1, 590)	=	592 0.59
Model	.144114257	1	.144114257	Prob > F	_	
Residual	144.834366	590	.245481976	R-squared	=	
Total	144.97848	591	.245310457	Adj R-squared Root MSE	=	
resid	Coef.	Std. Err.	t P	> t [95% Co	nf.	Interval]
resid L1.	0317344	.0414177	-0.77 0	.444113078	5	.0496098
_cons	0015618	.0203639	-0.08 0	.939041556	3	.0384327

Normality of the residuals


```
Mundlak test
```

Random-effects GLS	regression		Num	ber of ob	s =	648
Group variable: ID	5			ber of gr		54
				-		
R-sq:			Obs	per grou	p:	
within = 0.13	359				min =	2
between = 0.99	906				avg =	12.0
overall = 0.93	386				max =	14
				d chi2(24		357.30
<pre>corr(u_i, X) = 0</pre>	(assumed)		Pro	b > chi2	= 6	0000
		(S	td. Err.	adjusted	for 54 clust	ters in ID)
-		Dahuat				
InTrucionaDan	Coof	Robust	_	Do La L	[OF% Conf	Totom (all
LnInvoicesPop	Coef.	Std. Err.	Z	P> z	[95% CONT.	. Interval]
LnWB_PRL	.7651109	.2646211	2.89	0.004	.246463	1.283759
LnWB_GDPpcgbp	1.470836	.2340103	6.29	0.004	1.012184	1.929487
BIPM_CMCs	0206703	.0016967	-12.18	0.000	0239959	0173448
LnCEPII_dist	4672759	.0169279	-27.60	0.000	500454	
LnISO_Population	1704706	.0240287	-7.09	0.000	217566	1233752
		1021020/	,,		122,500	
U						
L1.	.3439932	.0468007	7.35	0.000	.2522655	.4357209
L2.	.326922	.0458537	7.13	0.000	.2370503	.4167936
L3.	.214052	.0345459	6.20	0.000	.1463433	.2817607
lambda	. 2978994	.1405654	2.12	0.034	.0223963	.5734025
LnWB_PRLmean	.5237407	.2848934	1.84	0.066	0346401	1.082121
LnWB_GDPpcgbpmean	1573595	.2115587	-0.74	0.457	5720068	.2572879
YEAR						
2005	.1792693	.0880072	2.04	0.042	.0067784	.3517601
2006	1031179	.1179523	-0.87	0.382	3343001	.1280643
2007	0786244	.1198505	-0.66	0.512	313527	.1562782
2008	3894235	.111963	-3.48	0.001	6088668	1699801
2009	6144575	.1527285	-4.02	0.000	9138	3151151
2010	462623	.1671302	-2.77	0.006	7901922	1350538
2011	6856868	.1777711	-3.86	0.000	-1.034112	3372619
2012	6562717	.137658	-4.77	0.000	9260765	3864669
2013	5493056	.180723	-3.04	0.002	9035162	195095
2014	5485883	.1480064	-3.71	0.000	8386756	258501
2015	5528964	.1808898	-3.06	0.002	9074338	198359
2016	9383959	.235231	-3.99	0.000	-1.39944	4773517 7119926
2017	-1.218002	.2581728	-4.72	0.000	-1.724011	/119970
_cons	-18.80047	.8876373	-21.18	0.000	-20.54021	-17.06073
sigma_u	0					
sigma_e	.45502543	(c	<i>.</i> .		• •	
rho	0	(fraction	ot varia	nce due t	o u_1)	
	I					

- (1) LnWB_PRLmean = 0
 (2) LnWB_GDPpcgbpmean = 0

```
chi2( 2) = 4.32
Prob > chi2 = 0.115
                        0.1151
```

Model C1

Iteration 1: log Iteration 2: log Iteration 3: log	g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel:	ihood = -409 ihood = -385 ihood = -384	.52578 .38575 .19913			
-	g pseudolikel:					
Probit regression Log pseudolikeliho	pod = -384.19	921	Wa Pr	umber of obs ald chi2(21) rob > chi2 seudo R2		1,134 265.44 0.0000 0.4389
TREATED	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
	.9085269	.1943311	4.68	0.000	.527645	1.289409
LnWB_GDPpcgbp	.9060121	.0904492	10.02	0.000	.7287351	1.083289
BIPM_CMCs	.018066	.0144459	1.25		0102474	.0463794
LnCEPII dist	2644412	.0717865	-3.68		4051402	1237421
LnISO_Population	.4579846	.055713	8.22	0.000	.348789	.5671801
рU						
L1.	4049774	.3369054	-1.20	0.229	-1.0653	.255345
L2.	-1.21919	.3341963	-3.65	0.000	-1.874203	5641774
L3.	1732434	.3183474	-0.54	0.586	7971929	.4507062
YEAR						
2005	0255224	.3001165	-0.09	0.932	6137399	.562695
2005	6309503	.2764285	-2.28		-1.17274	0891604
2000	4416595	.3128439	-1.41		-1.054822	.1715033
2007	4775795	.2849593	-1.68		-1.036089	.0809304
2009	763232	.287055	-2.66		-1.32585	2006145
2010	7262719	.2838726	-2.56		-1.282652	1698919
2010	-1.15205	.2842461	-4.05		-1.709163	5949383
2012	-1.020526	.2869221	-3.56	0.000	-1.582883	4581685
2013	8162166	.2881362	-2.83	0.005	-1.380953	2514801
2014	8320387	.2770438	-3.00	0.003	-1.375035	2890427
2015	5971346	.2948917	-2.02	0.043	-1.175112	0191576
2016	-1.029605	.2912724	-3.53	0.000	-1.600488	4587213
2017	-1.252434	.3001771	-4.17	0.000	-1.84077	6640974
_cons	-11.47245	1.332398	-8.61	0.000	-14.0839	-8.860996

Linear regression				mber of ob 22, 625)	s = =	648 469.31
			Pro	ob > F	=	0.0000
			R-:	squared	=	0.9380
			Ro	ot MSE	=	.50351
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LnWB_PRL	1.238868	.0765929	16.17	0.000	1.088457	1.389278
LnWB_GDPpcgbp	1.334916	.0755519	17.67	0.000	1.18655	1.483283
BIPM_CMCs	0203664	.00168	-12.12	0.000	0236655	0170673
LnCEPII_dist	475067	.0159356	-29.81	0.000	5063609	4437732
LnISO_Population	1712076	.028077	-6.10	0.000	2263442	116071
U						
L1.	.347696	.0455758	7.63	0.000	.2581957	.4371962
L2.	.3308802	.0429688	7.70	0.000	.2464996	.4152609
L3.	.216301	.0415533	5.21	0.000	.1347	.2979021
lambda	.283928	.142488	1.99	0.047	.0041147	.5637413
YEAR						
2005	.1819607	.0976722	1.86	0.063	0098448	.3737662
2006	0920482	.1124853	-0.82	0.413	312943	.1288466
2007	0619161	.1138929	-0.54	0.587	2855751	.1617429
2008	4259395	.1123042	-3.79	0.000	6464788	2054001
2009	6681301	.1053219	-6.34	0.000	8749577	4613025
2010	5348193	.104634	-5.11	0.000	7402961	3293426
2011	7635247	.1197042	-6.38	0.000	9985959	5284536
2012	7195368	.105622	-6.81	0.000	9269538	5121199
2013	6083887	.1154341	-5.27	0.000	8350744	3817029
2014	5725413	.1015011	-5.64	0.000	7718658	3732168
2015	5334067	.0992389	-5.37	0.000	7282888	3385247
2016	9362018	.1108656	-8.44	0.000	-1.153916	7184875
2017	-1.238251	.1201225	-10.31	0.000	-1.474143	-1.002358
_cons	-18.94411	1.10697	-17.11	0.000	-21.11794	-16.77027

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 625) =	17.87
	Prob > F =	0.0000

Model C2

Г

Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel:	ihood = -368 ihood = -346 ihood = -345 ihood = -345 ihood = -345	.71544 .48657 .30723 .30402 .30402 .30402 Nu Wa Pr	umber of obs ild chi2(21) rob > chi2 seudo R2		1,064 231.42 0.0000 0.4229
		Robust				
TREATED	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
LnWB_PRL	.9734544	.2050084	4.75	0.000	.5716453	1.375264
LnWB_GDPpcgbp	.8021639	.0928346	8.64	0.000	.6202116	.9841163
BIPM_CMCs	.0120047	.0130965	0.92	0.359	0136639	.0376734
LnCEPII_dist	2177604	.0776437	-2.80	0.005	3699392	0655816
LnISO_Population	.4357047	.0577139	7.55	0.000	.3225875	.5488219
pU						
L1.	7017946	.3258374	-2.15	0.031	-1.340424	063165
L2.	-1.348467	.3217812	-4.19	0.000	-1.979146	717787
L3.	4648687	.311382	-1.49	0.135	-1.075166	.1454288
YEAR						
2005	0500267	.3111108	-0.16	0.872	6597927	.5597394
2006	6212117	.2843	-2.19	0.029	-1.178429	063994
2007	4435881	.3237331	-1.37	0.171	-1.078093	.1909171
2008	4818523	.2934968	-1.64	0.101	-1.057096	.093391
2009	7017645	.3008086	-2.33	0.020	-1.291338	1121906
2010	6423429	.2981859	-2.15	0.031	-1.226777	0579092
2011	-1.120724	.2956011	-3.79	0.000	-1.700092	5413568
2012	-1.01464	.296684	-3.42	0.001	-1.59613	4331496
2013	7790938	.3015406	-2.58	0.010	-1.370102	1880852
2014	7301093	.2932763	-2.49	0.013	-1.30492	1552984
2015	4385673	.3149661	-1.39	0.164	-1.05589	.178755
2016	8790883	.3077962	-2.86	0.004	-1.482358	2758188
2017	-1.201648	.3153783	-3.81	0.000	-1.819778	5835179
cons	-10.29496	1.354829	-7.60	0.000	-12.95037	-7.639541

Linear regression			Nu	mber of obs	=	648
			F (2	22, 625)	=	468.43
			Pro	ob > F	=	0.0000
			R-:	squared	=	0.9380
			Ro	ot MSE	=	.50334
	_	Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
LnWB_PRL	1.232712	.0767565	16.06	0.000	1.081981	1.383444
LnWB_GDPpcgbp	1.348551	.0741122	18.20	0.000	1.203012	1.494091
BIPM_CMCs	0205216	.0016853	-12.18	0.000	0238311	0172121
LnCEPII_dist	4729609	.0159258	-29.70	0.000	5042355	4416864
LnISO_Population	1684318	.0278516	-6.05	0.000	2231259	1137378
U						
L1.	.3478359	.0455298	7.64	0.000	.258426	.4372458
L2.	.3307852	.0430039	7.69	0.000	.2463355	.4152349
L3.	.2159888	.0415521	5.20	0.000	.1343902	. 2975874
lambda	.3017339	.1476431	2.04	0.041	.0117973	.5916705
YEAR						
2005	.1843174	.0977495	1.89	0.060	0076398	.3762745
2006	0934201	.1124526	-0.83	0.406	3142507	.1274106
2007	0644678	.1138542	-0.57	0.571	2880509	.1591152
2008	4281073	.1122763	-3.81	0.000	6485919	2076228
2009	6767303	.1053928	-6.42	0.000	<mark>88</mark> 36972	4697633
2010	5429053	.1048186	-5.18	0.000	7487446	3370659
2011	7687787	.1196001	-6.43	0.000	-1.003645	533912
2012	7234247	.1053653	-6.87	0.000	9303375	5165119
2013	6128461	.1151118	-5.32	0.000	8388988	3867934
2014	5713248	.1011587	-5.65	0.000	7699768	3726727
2015	5324065	.0989629	-5.38	0.000	7267465	3380664
2016	9348863	.1099122	-8.51	0.000	-1.150728	7190444
2017	-1.244838	.1192749	-10.44	0.000	-1.479066	-1.01061
_cons	-19.13626	1.090025	-17.56	0.000	-21.27682	-16.99571

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 625) =	18.50
	Prob > F =	0.0000

Model C3

[
Iteration 0: log	g pseudolikel:	ihood = -446	.69777			
	g pseudolikel:					
	g pseudolikel:					
	g pseudolikel:					
	g pseudolikel:					
	g pseudolikel:					
Probit regression			Nu	mber of obs	5 =	952
			Wa	ld chi2(21)) =	200.27
			Pr	ob > chi2	=	0.0000
Log pseudolikeliho	ood = -258.300	998	Ps	eudo R2	=	0.4218
		Robust				
TREATED	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
			_	1 - 1	•	
LnWB_PRL	.6545887	.2252363	2.91	0.004	.2131337	1.096044
LnWB_GDPpcgbp	.7577269	.1062245	7.13	0.000	.5495307	.965923
BIPM_CMCs	.0153726	.0160751	0.96	0.339	016134	.0468792
LnCEPII_dist	2355645	.0892665	-2.64	0.008	4105237	0606053
LnISO Population	.3702859	.0681741	5.43	0.000	.236667	.5039047
pU						
L1.	-1.12034	.3190567	-3.51	0.000	-1.74568	4950009
L2.	-1.458272	.3332166	-4.38	0.000	-2.111364	8051793
L3.	4344022	.3438771	-1.26	0.206	-1.108389	.2395846
YEAR						
2005	.0446718	.327767	0.14	0.892	5977397	.6870834
2006	5613187	.3043627	-1.84	0.065	-1.157859	.0352212
2007	3948577	.352433	-1.12	0.263	-1.085614	.2958983
2008	3227619	.3139229	-1.03	0.304	9380394	.2925156
2009	4468967	.3298895	-1.35	0.176	-1.093468	.1996748
2010	3969867	.3124455	-1.27	0.204	-1.009369	.2153953
2011	8465934	.319074	-2.65	0.008	-1.471967	2212198
2012	8312878	.3092257	-2.69	0.007	-1.437359	2252166
2013	2810815	.3311853	-0.85	0.396	9301929	.3680298
2014	4141301	.3335603	-1.24	0.214	-1.067896	.239636
2015	0178506	.37875	-0.05	0.962	7601869	.7244857
2016	4326574	.348879	-1.24	0.215	-1.116448	.2511328
2017	8441015	.3634953	-2.32	0.020	-1.556539	1316638
_cons	-8.926634	1.630389	-5.48	0.000	-12.12214	-5.73113

Г

Linear regression			Nu	mber of obs	=	648
			FC	22, 625)	=	469.12
				ob > F	=	0.0000
				squared	=	0.9379
				ot MSE	=	.50385
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
LnWB_PRL	1.17244	.0752526	15. <mark>5</mark> 8	0.000	1.024662	1.320219
LnWB_GDPpcgbp	1.401174	.0729221	19.21	0.000	1.257972	1.544376
BIPM_CMCs	0212586	.0016789	-12.66	0.000	0245555	0179617
LnCEPII_dist	476195	.015851	-30.04	0.000	5073227	4450673
LnISO_Population	1552831	.0271826	-5.71	0.000	2086633	1019028
U						
L1.	.3517025	.0456046	7.71	0.000	.2621457	.4412593
L2.	.3321039	.0428595	7.75	0.000	.2479378	.4162701
L3.	.2158438	.0416761	5.18	0.000	.1340016	.297686
lambda	.3191935	.1834423	1.74	0.082	0410444	.6794314
YEAR						
2005	.1807898	.0976225	1.85	0.065	0109181	.3724976
2006	1118126	.1127697	-0.99	0.322	333266	.1096408
2007	0866946	.1146688	-0.76	0.450	3118774	.1384882
2008	440773	.1125196	-3.92	0.000	6617353	2198108
2009	6725818	.1053786	-6.38	0.000	8795208	4656428
2010	5416522	.1050011	-5.16	0.000	74785	3354544
2011	7671354	.1197138	-6.41	0.000	-1.002225	5320454
2012	7338291	.1056732	-6.94	0.000	9413466	5263116
2013	6162592	.1151052	-5.35	0.000	842299	3902195
2014	5827257	.1011512	-5.76	0.000	7813631	3840883
2015	543442	.0990853	-5.48	0.000	7380223	3488617
2016	939383	.1087017	-8.64	0.000	-1.152848	7259182
2017	-1.255023	.1175631	-10.68	0.000	-1.48589	-1.024157
_cons	-19.84282	1.066743	-18.60	0.000	-21.93766	-17.74799

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 625) =	19.23
	Prob > F =	0.0000

Model C4

Iteration 1: log pseudolikelihood = -235.56083 Iteration 2: log pseudolikelihood = -218.7592 Iteration 3: log pseudolikelihood = -218.7592 Iteration 4: log pseudolikelihood = -218.74944 Probit regression Number of obs = 896 Wald chi2(21) = 176.91 Prob > chi2 = 0.0000 Log pseudolikelihood = -218.74944 Pseudo R2 = 0.3958 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_GDPpgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.4680176504 .0384439 LnCEPII_dist174327 .0902575 -1.93 0.6533512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076266 .3198686 20881602407 .3318299 -0.48 0.628 -8.01355 .480671 2009233122 .347225 -0.82 0.4159636772 .3774208 2010151736 .329087 -0.46 0.6437927188 .489671 20117232792 .333717 -2.17 0.038 -1.076266 .3198686 20881608407 .3318999 -2.19 0.028 -1.328344 .0742265 20101517936 .3270837 -0.46 0.6437927188 .489671 20117232792 .3337917 -2.17 0.039 -1.3774990690594 201279012854 .319339 -2.19 0.028 -1.328344 .0742265 20132020155 .3450203 -0.59 0.5587824248 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .2026572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.459 -1.4879120164601 cons -10.36444 2.116554 -4.90 0.000 -14.51281 -6.216674	Iteration 0: log	g pseudolikel:	ihood = -362	.04766			
Iteration 2: log pseudolikelihood = -219.5452 Iteration 3: log pseudolikelihood = -218.75292 Iteration 5: log pseudolikelihood = -218.74944 Probit regression Number of obs = 896 Wald chi2(21) = 176.91 Probit regression Number of obs = 0.0000 Log pseudolikelihood = -218.74944 Prob > chi2 = 0.0000 Log pseudolikelihood = -218.74944 Pseudo R2 = 0.3958 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_GPPcgbp .8427734 .1551164 5.43 0.000 .5387588 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.4680176504 .0384439 LnCEPII_dist .174327 .0902575 -1.93 0.6533512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 -2.305432 .5102332 pU L18866492 .3442407 -2.58 0.010 -1.561349 -2119499 L21.525047 .3342729 -4.56 0.000 -2.1802188984 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198866 2008 -1.608407 .3318999 -0.48 0.6288113525	•						
Iteration 3: log pseudolikelihood = -218.75292 Iteration 4: log pseudolikelihood = -218.74944 Iteration 5: log pseudolikelihood = -218.74944 Probit regression Number of obs = 896 Wald chi2(21) = 176.91 Prob > chi2 = 0.0000 Log pseudolikelihood = -218.74944 Pseudo R2 = 0.3958	•						
Iteration 4: log pseudolikelihood = -218.74944 Iteration 5: log pseudolikelihood = -218.74944 Probit regression Number of obs = 896 Wald chi2(21) = 176.91 Prob > chi2 = 0.0000 Log pseudolikelihood = -218.74944 Prob > chi2 = 0.30958 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_OPRL .4638484 .2246473 2.066 0.393 .0235477 .9041491 LnWB_GDPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.468 .0176504 .038439 LnCEPII_dist 174327 .0902575 -1.93 0.053 .3512283 .0025744 LnSO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU . 8866492 .3442407 -2.58 0.010 -1.561349 .2119499 L2 -1.525047 .3342729 -4.56 0.000 -2.18021 869884 L3 6021976 .3502288 -1.72 0.086 -1.288633 .08							
Iteration 5: log pseudolikelihood = -218.74944 Probit regression Number of obs = 896 Wald chi2(21) = 176.91 Prob > chi2 = 0.0000 Log pseudolikelihood = -218.74944 Pseudo R2 = 0.3958	-						
Probit regression Number of obs = 896 Wald chi2(21) = 176.91 Prob > chi2 = 0.0000 Log pseudolikelihood = -218.74944 Prob > chi2 = 0.3958 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_GDPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.468 -0175504 .038439 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU L1 8866492 .3442407 -2.58 0.010 -1.561349 2119499 L2 -1.525047 .3342729 -4.56 0.000 -2385432 .5102332 YEAR 2005 .2411578 .3490726 0.69 443012 .9253276 2006 .4560896 .310242 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Wald chi2(21) = 176.91 Log pseudolikelihood = -218.74944 Prob > chi2 = 0.0000 Pseudo R2 = 0.3958 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_ODPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.4680176504 .0384439 IntSO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU .118866492 .3442407 -2.58 0.010 -1.5613492119499 L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.066 0.288 -1.076206 .3198686 2008 .1608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .347252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 2012 .7012854 .319939 -2.19 0.028 -1.328344 -0742265 20132020155 .3450203 -0.59 0.5588782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727		5 F					
Wald chi2(21) = 176.91 Log pseudolikelihood = -218.74944 Prob > chi2 = 0.0000 Pseudo R2 = 0.3958 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_ODPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.4680176504 .0384439 IntSO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU .118866492 .3442407 -2.58 0.010 -1.5613492119499 L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.066 0.288 -1.076206 .3198686 2008 .1608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .347252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 2012 .7012854 .319939 -2.19 0.028 -1.328344 -0742265 20132020155 .3450203 -0.59 0.5588782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727	Probit regression			N	umber of obs	=	896
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-			Wa	ald chi2(21)	=	176.91
Robust TREATED Robust Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL LnWB_GDPpcgbp .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_GDPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIFM_CMCs .0103968 .01431 0.73 0.468 .0176504 .0384339 LnCEPII_dist 174327 .0902575 -1.93 0.0653 3512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU . 8866492 .3442407 -2.58 0.010 -1.561349 2119499 L2. -1.525047 .3342729 -4.56 0.000 -2.18021 869884 L3. 6021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR . . .468407 .318999 -0.48 .628 .8113525 .4896711 2006				Pi	rob > chi2	=	0.0000
Robust TREATED Robust Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL LnWB_GDPpcgbp .4638484 .2246473 2.06 0.039 .0235477 .9041491 LnWB_GDPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIFM_CMCs .0103968 .01431 0.73 0.468 .0176504 .0384339 LnCEPII_dist 174327 .0902575 -1.93 0.0653 3512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU . 8866492 .3442407 -2.58 0.010 -1.561349 2119499 L2. -1.525047 .3342729 -4.56 0.000 -2.18021 869884 L3. 6021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR . . .468407 .318999 -0.48 .628 .8113525 .4896711 2006	Log pseudolikeliho	pod = -218.749	944	P	seudo R2	=	0.3958
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Robust				
LnWB_PRL .4638484 .2246473 2.06 0.039 .0235477 .9941491 LnWB_GDPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.468 0176504 .0384439 LnCEPII_dist 174327 .0902575 -1.93 0.0653 3512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU .11 8866492 .3442407 -2.58 0.010 -1.561349 2119499 L2. -1.525047 .3342729 -4.56 0.000 -2.18021 869884 L3. 6021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR .2005 .2411578 .3490726 0.69 0.490 443012 .9253276 2006 4560896 .3102442 -1.47 0.142 -1.064157 .1519778 2007 3781685	TREATED	Coef.		z	P> z	[95% Conf.	Intervall
LnWB_GDPpcgbp .8427734 .1551164 5.43 0.000 .5387508 1.146796 BIPM_CMCs .0103968 .01431 0.73 0.4680176504 .0384439 LnCEPII_dist174327 .0902575 -1.93 0.0533512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198686 2008 .1608407 .3318999 -0.48 0.628 -8113525 .4896711 20092831282 .3472252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.080 -1.3774990690594 20127012854 .3199339 -2.19 0.028 1.328344 -0742265 2013 -2020155 .3450203 -0.59 0.558 .8782428 .4742118 2014 -4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.450 -1.044843 .4631915 20177521861 .3753773 -2.00 0.045 -1.4879120164601				-		•	
BIPM_CMCs .0103968 .01431 0.73 0.468 0176504 .0384439 LnCEPII_dist 174327 .0902575 -1.93 0.053 3512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU L1 8866492 .3442407 -2.58 0.010 -1.561349 2119499 L2 -1.525047 .3342729 -4.56 0.000 -2.18021 869884 L3 6021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR - 4560896 .3102442 -1.47 0.142 -1.064157 .1519778 2005 .2411578 .3490726 0.69 0.490 443012 .9253276 2006 4560896 .3102442 -1.47 0.142 -1.064157 .1519778 2007 3781685 .3561479 -1.06 0.288 -1.076206 .3198686 2008 1608407 .3318999 -0.48 0.628 .8113525 .4896711 2009	LnWB_PRL	.4638484	.2246473	2.06	0.039	.0235477	.9041491
LnCEPII_dist174327 .0902575 -1.93 0.0533512283 .0025744 LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198686 20081608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .3472252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 2012 .7012854 .319939 -2.19 0.028 -1.328344 -0742265 2013 .2020155 .3450203 -0.59 0.558 .8782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.450 -1.044843 .4631915 20177521861 .3753773 -2.00 0.045 -1.4879120164601	LnWB_GDPpcgbp	.8427734	.1551164	5.43	0.000	.5387508	1.146796
LnISO_Population .3703882 .0713508 5.19 0.000 .2305432 .5102332 pU L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198686 20081608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .3472252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 20127012854 .319939 -2.19 0.028 -1.3283440742265 20132020155 .3450203 -0.59 0.5588782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.450 -1.044843 .4631915 20177521861 .3753773 -2.00 0.045 -1.4879120164601	BIPM_CMCs	.0103968	.01431	0.73	0.468	0176504	.0384439
pU L1. 8866492 .3442407 -2.58 0.010 -1.561349 2119499 L2. -1.525047 .3342729 -4.56 0.000 -2.18021 869884 L3. 6021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490 443012 .9253276 2006 4560896 .3102442 -1.47 0.142 -1.064157 .1519778 2007 3781685 .3561479 -1.06 0.288 -1.076206 .3198686 2008 1608407 .3318999 -0.48 0.628 8113525 .4896711 2009 2831282 .3472252 -0.82 0.415 .9636772 .3974208 2010 1517936 .3270087 -0.46 0.643 7927188 .4891317 2011 7232792 .3337917 -2.17 0.030 -1.377499 .0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 .0742265 </td <td>LnCEPII_dist</td> <td>174327</td> <td>.0902575</td> <td>-1.93</td> <td>0.053</td> <td>3512283</td> <td>.0025744</td>	LnCEPII_dist	174327	.0902575	-1.93	0.053	3512283	.0025744
L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198686 20081608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .3472252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 20127012854 .3199339 -2.19 0.028 -1.3283440742265 20132020155 .3450203 -0.59 0.5588782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.450 -1.044843 .4631915 20177521861 .3753773 -2.00 0.045 -1.4879120164601	LnISO_Population	.3703882	.0713508	5.19	0.000	.2305432	.5102332
L18866492 .3442407 -2.58 0.010 -1.5613492119499 L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198686 20081608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .3472252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 20127012854 .3199339 -2.19 0.028 -1.3283440742265 20132020155 .3450203 -0.59 0.5588782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.450 -1.044843 .4631915 20177521861 .3753773 -2.00 0.045 -1.4879120164601							
L21.525047 .3342729 -4.56 0.000 -2.18021869884 L36021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490443012 .9253276 20064560896 .3102442 -1.47 0.142 -1.064157 .1519778 20073781685 .3561479 -1.06 0.288 -1.076206 .3198686 20081608407 .3318999 -0.48 0.6288113525 .4896711 20092831282 .3472252 -0.82 0.4159636772 .3974208 20101517936 .3270087 -0.46 0.6437927188 .4891317 20117232792 .3337917 -2.17 0.030 -1.3774990690594 20127012854 .3199339 -2.19 0.028 -1.3283440742265 20132020155 .3450203 -0.59 0.5588782428 .4742118 20144213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.9487849449 .8386593 20162908256 .3847097 -0.76 0.459 -1.044843 .4631915 20177521861 .3753773 -2.00 0.045 -1.4879120164601	рU						
L3. 6021976 .3502288 -1.72 0.086 -1.288633 .0842382 YEAR 2005 .2411578 .3490726 0.69 0.490 443012 .9253276 2006 4560896 .3102442 -1.47 0.142 -1.064157 .1519778 2007 3781685 .3561479 -1.06 0.288 -1.076206 .3198686 2008 1608407 .3318999 -0.48 0.628 8113525 .4896711 2009 2831282 .3472252 -0.82 0.415 9636772 .3974208 2010 1517936 .3270087 -0.46 0.643 7927188 .4891317 2011 7232792 .3337917 -2.17 0.030 -1.377499 0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015	L1.	8866492	.3442407	-2.58	0.010	-1.561349	2119499
YEAR 2005 .2411578 .3490726 0.69 0.490 443012 .9253276 2006 4560896 .3102442 -1.47 0.142 -1.064157 .1519778 2007 3781685 .3561479 -1.06 0.288 -1.076206 .3198686 2008 1608407 .3318999 -0.48 0.628 8113525 .4896711 2009 2831282 .3472252 -0.82 0.415 9636772 .3974208 2010 1517936 .3270087 -0.46 0.643 7927188 .4891317 2011 7232792 .3337917 -2.17 0.030 -1.377499 0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016	L2.	-1.525047	.3342729	-4.56	0.000	-2.18021	869884
2005.2411578.34907260.690.490443012.925327620064560896.3102442-1.470.142-1.064157.151977820073781685.3561479-1.060.288-1.076206.319868620081608407.3318999-0.480.6288113525.489671120092831282.3472252-0.820.4159636772.397420820101517936.3270087-0.460.6437927188.489131720117232792.3337917-2.170.030-1.377499069059420127012854.3199339-2.190.028-1.328344074226520132020155.3450203-0.590.5588782428.474211820144213002.3452476-1.220.222-1.097973.25537272015.0268572.41419240.060.9487849449.838659320162908256.3847097-0.760.450-1.044843.463191520177521861.3753773-2.000.045-1.4879120164601	L3.	6021976	.3502288	-1.72	0.086	-1.288633	.0842382
2005.2411578.34907260.690.490443012.925327620064560896.3102442-1.470.142-1.064157.151977820073781685.3561479-1.060.288-1.076206.319868620081608407.3318999-0.480.6288113525.489671120092831282.3472252-0.820.4159636772.397420820101517936.3270087-0.460.6437927188.489131720117232792.3337917-2.170.030-1.377499069059420127012854.3199339-2.190.028-1.328344074226520132020155.3450203-0.590.5588782428.474211820144213002.3452476-1.220.222-1.097973.25537272015.0268572.41419240.060.9487849449.838659320162908256.3847097-0.760.450-1.044843.463191520177521861.3753773-2.000.045-1.4879120164601							
20064560896.3102442-1.470.142-1.064157.151977820073781685.3561479-1.060.288-1.076206.319868620081608407.3318999-0.480.6288113525.489671120092831282.3472252-0.820.4159636772.397420820101517936.3270087-0.460.6437927188.489131720117232792.3337917-2.170.030-1.377499069059420127012854.3199339-2.190.028-1.328344074226520132020155.3450203-0.590.5588782428.474211820144213002.3452476-1.220.222-1.097973.25537272015.0268572.41419240.060.9487849449.838659320162908256.3847097-0.760.450-1.044843.463191520177521861.3753773-2.000.045-1.4879120164601	YEAR						
2007 3781685 .3561479 -1.06 0.288 -1.076206 .3198686 2008 1608407 .3318999 -0.48 0.628 8113525 .4896711 2009 2831282 .3472252 -0.82 0.415 9636772 .3974208 2010 1517936 .3270087 -0.46 0.643 7927188 .4891317 2011 7232792 .3337917 -2.17 0.030 -1.377499 0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2005	.2411578	.3490726	0.69	0.490	443012	.9253276
20081608407.3318999-0.480.6288113525.489671120092831282.3472252-0.820.4159636772.397420820101517936.3270087-0.460.6437927188.489131720117232792.3337917-2.170.030-1.377499069059420127012854.3199339-2.190.028-1.328344074226520132020155.3450203-0.590.5588782428.474211820144213002.3452476-1.220.222-1.097973.25537272015.0268572.41419240.060.9487849449.838659320162908256.3847097-0.760.450-1.044843.463191520177521861.3753773-2.000.045-1.4879120164601	2006	4560896	.3102442	-1.47	0.142	-1.064157	.1519778
2009 2831282 .3472252 -0.82 0.415 9636772 .3974208 2010 1517936 .3270087 -0.46 0.643 7927188 .4891317 2011 7232792 .3337917 -2.17 0.030 -1.377499 0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2007	3781685	.3561479	-1.06	0.288	-1.076206	.3198686
2010 1517936 .3270087 -0.46 0.643 7927188 .4891317 2011 7232792 .3337917 -2.17 0.030 -1.377499 0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2008	1608407	.3318999	-0.48	0.628	8113525	.4896711
2011 7232792 .3337917 -2.17 0.030 -1.377499 0690594 2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2009	2831282	.3472252	-0.82	0.415	9636772	.3974208
2012 7012854 .3199339 -2.19 0.028 -1.328344 0742265 2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2010	1517936	.3270087	-0.46	0.643	7927188	.4891317
2013 2020155 .3450203 -0.59 0.558 8782428 .4742118 2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2011	7232792	.3337917	-2.17	0.030	-1.377499	0690594
2014 4213002 .3452476 -1.22 0.222 -1.097973 .2553727 2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2012	7012854	.3199339	-2.19	0.028	-1.328344	0742265
2015 .0268572 .4141924 0.06 0.948 7849449 .8386593 2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2013	2020155	.3450203	-0.59	0.558	8782428	.4742118
2016 2908256 .3847097 -0.76 0.450 -1.044843 .4631915 2017 7521861 .3753773 -2.00 0.045 -1.487912 0164601	2014	4213002	.3452476	-1.22	0.222	-1.097973	.2553727
20177521861 .3753773 -2.00 0.045 -1.4879120164601	2015	.0268572	.4141924	0.06	0.948	7849449	.8386593
	2016	2908256	.3847097	-0.76	0.450	-1.044843	.4631915
_cons -10.36444 2.116554 -4.90 0.000 -14.51281 -6.216074	2017	7521861	.3753773	-2.00	0.045	-1.487912	0164601
	_cons	-10.36444	2.116554	-4.90	0.000	-14.51281	-6.216074

						640
Linear regression				mber of obs		648
				22,625)		467.68
				ob > F		0.0000
				squared		0.9378
			Ro	ot MSE	=	.50431
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LnWB_PRL	1.123656	.0740769	15.17	0.000	.9781867	1.269126
LnWB_GDPpcgbp	1.460542	.0747442	19.54	0.000	1.313761	1.607322
BIPM_CMCs	0218875	.0016923	-12.93	0.000	0252107	0185642
LnCEPII_dist	4746845	.015869	-29.91	0.000	5058476	4435214
LnISO_Population	1437861	.0275922	-5.21	0.000	1979708	0896014
U						
L1.	.3539822	.0456251	7.76	0.000	.2643852	.4435793
L2.	.332643	.0428589	7.76	0.000	.2484781	.416808
L3.	.215367	.0416386	5.17	0.000	.1335985	.2971354
lambda	.3137628	.2129724	1.47	0.141	1044652	.7319909
YEAR						
2005	.1615747	.0974753	1.66	0.098	029844	.3529934
2006	1351552	.1128261	-1.20	0.231	3567194	.086409
2007	1056242	.1151345	-0.92	0.359	3317215	.120473
2008	4556213	.1121128	-4.06	0.000	6757846	2354579
2009	6939795	.1049568	-6.61	0.000	9000901	4878689
2010	5568172	.1052489	-5.29	0.000	7635016	3501329
2011	7761306	.1194824	-6.50	0.000	-1.010766	541495
2012	7426582	.105482	-7.04	0.000	9498002	5355161
2013	6329711	.1149766	-5.51	0.000	8587583	4071839
2014	6039764	.101283	-5.96	0.000	8028726	4050801
2015	5662532	.099032	-5.72	0.000	7607289	3717775
2016	963697	.1085828	-8.88	0.000	-1.176928	7504657
2017	-1.278091	.1176928	-10.86	0.000	-1.509212	-1.04697
_cons	-20.61736	1.095647	-18.82	0.000	-22.76896	-18.46577

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 625) =	19.16
	Prob > F =	0.0000

Model C5

Г

Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel: g pseudolikel:	ihood = -205 ihood = -18 ihood = -1 ihood = -189	.39911 9.9634 89.221 .21806 .21806	mber of ol	os =	868
FIODIC TEGRESSION				1d chi2(2:		157.28
				ob > chi2	· ·	0.0000
Log pseudolikeliho	ood = -189.218	806		eudo R2	=	0.4015
		Robust				
TREATED	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
LnWB_PRL	.650153	.2414449	2.69	0.007	.1769296	1.123376
LnWB_GDPpcgbp	.8204127	.1603762	5.12	0.000	.5060812	1.134744
BIPM_CMCs	.0071879	.0146195	0.49	0.623	0214658	.0358416
LnCEPII_dist	1469719	.0978738	-1.50	0.133	338801	.0448571
LnISO_Population	.3869709	.0748883	5.17	0.000	.2401925	.5337493
pU						
L1.	8645425	.3487202	-2.48	0.013	-1.548022	
L2.	-1.555782	.3432901	-4.53	0.000	-2.228619	8829463
L3.	487099	.3621311	-1.35	0.179	-1.196863	.2226648
YEAR						
2005	.2415744	.3732191	0.65	0.517	4899216	.9730703
2006	5629215	.3278195	-1.72	0.086	-1.205436	.0795928
2007	4749399	.3797846	-1.25	0.211	-1.219304	.2694242
2008	333615	.3436748	-0.97	0.332	-1.007205	.3399753
2009	3379751	.3723018	-0.91	0.364	-1.067673	.391723
2010	3297286	.3425226	-0.96	0.336	-1.001061	.3416034
2011	8524577	.3544506	-2.41	0.016	-1.547168	1577474
2012	8137174	.3347366	-2.43	0.015	-1.469789	1576458
2013	2064948	.3694574	-0.56		9306181	
2014	743584	.3501453	-2.12	0.034	-1.429856	0573118
2015	0857151	.4540086	-0.19	0.850	9755557	
2016	1994733	.4314772	-0.46	0.644	-1.045153	.6462064
2017	9709024	.3884067	-2.50	0.012	-1.732165	2096393
_cons	-10.31847	2.226905	-4.63	0.000	-14.68313	-5.953818

Linear regression			Nu	mber of obs	s =	648
			F (22, 625)	=	467.07
			Pr	ob > F	=	0.0000
			R-	squared	=	0.9379
			Ro	ot MSE	=	.50389
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
LnWB_PRL	1.134971	.0749253	15.15	0.000	.9878356	1.282107
LnWB_GDPpcgbp	1.455225	.0743798	19.56	0.000	1.30916	1.601289
BIPM_CMCs	0219057	.0016965	-12.91	0.000	0252372	0185742
LnCEPII_dist	4738119	.0159042	-29.79	0.000	5050441	4425797
LnISO_Population	144529	.0276398	-5.23	0.000	1988071	0902508
U						
L1.	.3534994	.0455302	7.76	0.000	.2640887	.4429101
L2.	.3317408	.0428759	7.74	0.000	.2475425	.4159392
L3.	.2149031	.0416885	5.15	0.000	.1330366	.2967696
lambda	.434563	.2553071	1.70	0.089	0668005	.9359265
YEAR						
2005	.1634459	.0977523	1.67	0.095	0285168	.3554085
2006	1429094	.1131174	-1.26	0.207	3650455	.0792268
2007	1124753	.1154409	-0.97	0.330	3391742	.1142237
2008	4620073	.1124252	-4.11	0.000	6827841	2412304
2009	6893391	.1049831	-6.57	0.000	8955015	4831766
2010	5554881	.1051958	-5.28	0.000	7620682	348908
2011	7736897	.1195253	-6.47	0.000	-1.00841	5389699
2012	7427924	.1056248	-7.03	0.000	9502148	53537
2013	6264322	.1149699	-5.45	0.000	8522063	4006582
2014	6152643	.1019575	-6.03	0.000	8154851	4150434
2015	5547638	.099307	-5.59	0.000	7497796	359748
2016	9444458	.1088167	- <mark>8.68</mark>	0.000	-1.158136	7307553
2017	-1.273729	.118714	-10.73	0.000	-1.506855	-1.040602
_cons	-20.55722	1.093192	-18.80	0.000	-22.704	-18.41045

(1)	2005.YEAR = 0
(2)	2006.YEAR = 0
(3)	2007.YEAR = 0
(4)	2008.YEAR = 0
(5)	2009.YEAR = 0
(6)	2010.YEAR = 0
(7)	2011.YEAR = 0
(8)	2012.YEAR = 0
(9)	2013.YEAR = 0
(10)	2014.YEAR = 0
(11)	2015.YEAR = 0
(12)	2016.YEAR = 0
(13)	2017.YEAR = 0
	F(13, 625) = 18.49
	Prob > F = 0.0000

Model D1

Iteration 0: log	g pseudolikel:	ihood = -679	.87823			
	g pseudolikel:					
•	g pseudolikel:					
-	g pseudolikel:					
•	g pseudolikel:					
	g pseudolikel:					
	s pseudoriker.	11000 - 504	.10050			
Probit regression			Nu	umber of obs	; =	1,120
				ald chi2(21)		264.92
				rob > chi2	=	0.0000
Log pseudolikeliho	od384 18	598		seudo R2	=	0.4349
	500 - 504.10				-	0.4545
		Robust				
TREATED	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
		J.C. E.F.	4	17141	[35,8 Com	. incervarj
LnWB_PRL	.9082056	.1945689	4.67	0.000	.5268576	1.289554
LnWB_GDPpcgbp	.9059529	.0904852	10.01	0.000	.7286052	1.083301
BIPM_CMCs	.0180796	.0144627	1.25	0.211	0102668	.046426
LnCEPII dist	2642824	.0719508	-3.67	0.000	4053035	1232614
LnISO_Population	.4578624	.0558522	8.20	0.000	.3483941	.5673307
pU						
L1.	4051436	.336928	-1.20	0.229	-1.06551	.2552232
L2.	-1.219299	.3342141	-3.65	0.000	-1.874347	5642515
L3.	1732405	.3183714	-0.54	0.586	7972369	.4507559
YEAR						
2005	0254701	.3001058	-0.08	0.932	6136667	.5627264
2006	6308604	.2764176	-2.28	0.022	-1.172629	0890919
2007	4415866	.3128331	-1.41	0.158	-1.054728	.171555
2008	4774517	.2849545	-1.68	0.094	-1.035952	.0810489
2009	7630788	.2870625	-2.66	0.008	-1.325711	2004466
2010	7260875	.283887	-2.56	0.011	-1.282496	1696792
2010	-1.151889	.284269	-4.05	0.000	-1.709046	5947319
2011	-1.020341	.2869505	-3.56	0.000	-1.582754	4579287
2012	8160219	.2883505	-2.83	0.005	-1.380822	2512219
2013	8318718	.2770649	-2.83	0.003	-1.374909	2888345
2014		.294884			-1.174932	
	5969697		-2.02			0190077
2016	-1.029416	.2913139	-3.53		-1.600381	4584511
2017	-1.252228	.3002398	-4.17	0.000	-1.840687	6637689
_cons	-11.47172	1.332712	-8.61	0.000	-14.08378	-8.859647
	1					

Linear regression			Nui	mber of obs	=	634
				22, 611)	=	388.53
				ob > F	=	0.0000
			R-	squared	=	0.9322
				ot MSE	=	.50691
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
LnWB_PRL	1.147715	.0768503	14.93	0.000	.9967926	1.298638
LnWB_GDPpcgbp	1.226853	.0774174	15.85	0.000	1.074816	1.378889
BIPM_CMCs	0111483	.0019352	-5.76	0.000	0149487	007348
LnCEPII_dist	3593276	.0170198	-21.11	0.000	392752	3259032
LnISO_Population	3039163	.0322507	-9.42	0.000	3672521	2405806
U						
L1.	.3413457	.0453473	7.53	0.000	.2522903	.4304011
L1.	.3274964	.0430124	7.61	0.000	.2430264	.4119664
L2.	.2138388	.0418296	5.11	0.000	.1316915	.2959861
		10120200		0.000		
lambda	.2671742	.1439183	1.86	0.064	0154604	.5498088
YEAR						
2005	.18594	.0998805	1.86	0.063	0102106	.3820907
2005	0869085	.1149942	-0.76	0.450	3127404	.1389233
2007	0645406	.1169112	-0.55	0.581	2941372	.1650561
2008	4025957	.1143387	-3.52	0.000	6271401	1780512
2009	6200695	.106941	-5.80	0.000	8300861	4100529
2010	4724193	.1060936	-4.45	0.000	6807716	264067
2011	7035685	.1227088	-5.73	0.000	9445507	4625862
2012	6555865	.1081226	-6.06	0.000	8679234	4432495
2013	5369498	.1175432	-4.57	0.000	7677874	3061122
2014	5093392	.1043534	-4.88	0.000	7142742	3044043
2015	4638597	.1010315	-4.59	0.000	6622708	2654486
2016	847744	.1133406	-7.48	0.000	-1.070328	6251596
2017	-1.13372	.123136	-9.21	0.000	-1.375541	8918988
_cons	-16.87623	1.159872	-14.55	0.000	-19.15405	-14.59841

(3) (4) (5)	2005.YEAR = 0 2006.YEAR = 0 2007.YEAR = 0 2008.YEAR = 0 2009.YEAR = 0 2010.YEAR = 0	
(7)	2011.YEAR = 0	
	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 611) = Prob > F =	14.31 0.0000

Model E1

Iteration 0: log	g pseudolikel:	ihood = -684	.74634			
	g pseudolikel:					
	g pseudolikel:					
	g pseudolikel:					
•	g pseudolikel:					
	g pseudolikel:					
	,					
Probit regression			N	umber of ob	s =	1,134
L C			W	ald chi2(21	.) =	265.54
			P	rob > chi2	=	0.0000
Log pseudolikeliho	300 = -384.226	658	P	seudo R2	=	0.4389
		Robust				
TREATED	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
			-	=1		
LnWB_PRL	.9086213	.1943051	4.68	0.000	.5277903	1.289452
LnWB_GDPpcgbp	.9056653	.0904226	10.02	0.000	.7284403	1.08289
BIPM_CMCs	.0180889	.0144484	1.25	0.211	0102295	.0464072
LnCEPII_dist	2644694	.0717729	-3.68	0.000	4051417	1237971
LnISO Population	.4578372	.0556985	8.22	0.000	.3486701	.5670043
pU						
L1.	4043971	.3368633	-1.20	0.230	-1.064637	.255843
L2.	-1.218282	.3341524	-3.65	0.000	-1.873209	5633555
L3.	1728158	.3183533	-0.54	0.587	7967768	.4511451
YEAR						
2005	0255025	.3001084	-0.08	0.932	6137042	.5626992
2006	6308183	.2764301	-2.28	0.022	-1.172611	0890253
2007	4415715	.3128403	-1.41	0.158	-1.054727	.1715841
2008	4775647	.2849589	-1.68	0.094	-1.036074	.0809446
2009	7631265	.2870537	-2.66	0.008	-1.325741	2005117
2010	7261184	.2838711	-2.56	0.011	-1.282496	1697412
2011	-1.151814	.2842389	-4.05	0.000	-1.708912	5947158
2012	-1.020335	.2869176	-3.56	0.000	-1.582683	4579863
2013	816073	.2881358	-2.83	0.005	-1.380809	2513373
2014	8319086	.2770377	-3.00	0.003	-1.374893	2889246
2015	59693	.2948821	-2.02	0.043	-1.174888	0189717
2016	-1.029355	.2912548	-3.53	0.000	-1.600204	4585058
2017	-1.25216	.3001407	-4.17		-1.840424	6638946
_cons	-11.46723	1.332091	-8.61	0.000	-14.07808	-8.856379

Linear regression				mber of obs		648
				22,625)	=	469.25
				ob > F	=	0.0000
				squared	=	0.9379
			Ro	ot MSE	=	.50353
		Robust		B . [1]		
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Cont	. Interval]
LnWB_PRL	1.239995	.0766003	16.19	0.000	1.08957	1.39042
LnWB_GDPpcgbp	1.336032	.0755381	17.69	0.000	1.187693	1.484371
BIPM_CMCs	0204606	.0016798	-12.18	0.000	0237594	0171618
LnCEPII_dist	4750386	.0159368	-29.81	0.000	5063349	4437424
LnISO_Population	1712238	.0280765	-6.10	0.000	2263595	1160881
U						
L1.	.3477257	.0455771	7.63	0.000	.2582229	.4372285
L2.	.3308797	.0429685	7.70	0.000	.2464995	.4152599
L3.	.2162795	.0415512	5.21	0.000	.1346826	.2978765
lambda	.2837195	.1424895	1.99	0.047	.0039034	.5635355
YEAR						
2005	.179506	.0978287	1.83	0.067	0126067	.3716187
2006	0918432	.112821	-0.81	0.416	3133972	.1297109
2007	0565486	.1140949	-0.50	0.620	2806043	.1675071
2008	4208652	.1123959	-3.74	0.000	6415846	2001458
2009	6633315	.1053443	-6.30	0.000	8702031	4564598
2010	5301543	.10457	-5.07	0.000	7355054	3248032
2011	7589205	.1197563	-6.34	0.000	9940938	5237471
2012	7149478	.1058302	-6.76	0.000	9227736	5071219
2013	6038617	.1155701	-5.23	0.000	8308144	376909
2014	5679046	.1016586	-5.59	0.000	7675384	3682707
2015	528842	.099399	-5.32	0.000	7240384	3336455
2016	9318848	.1110406	-8.39	0.000	-1.149943	7138269
2017	-1.234148	.1202439	-10.26	0.000	-1.470279	9980169
_cons	-18.9574	1.106662	-17.13	0.000	-21.13062	-16.78417

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 625) =	17.71
	Prob > F =	0.0000

Model F1

Iteration 1: log pseudolikelihood = -409.51636 Iteration 2: log pseudolikelihood = -384.63265 Iteration 4: log pseudolikelihood = -383.56968 Iteration 5: log pseudolikelihood = -383.56968 Probit regression Number of obs = 1,134 Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Probit regression Pseudolikelihood = -383.56968 Probit regression Number of obs = 1,134 Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Pseudo R2 = 0.4398	Iteration 0:	100 1	pseudolikeliho	pod = -684.74	1634			
Iteration 2: log pseudolikelihood = -384.63265 Iteration 3: log pseudolikelihood = -383.57267 Iteration 4: log pseudolikelihood = -383.56968 Probit regression Number of obs = 1,134 Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Prob > chi2 = 0.4398 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .4561072 1.189866 LNWB_GODMCKS_2019 .0141068 .0061784 2.28 0.022 .001974 .0262161 LNEPTI_dist263219 .0694796 -3.79 0.00039940941270544 LNISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -0.44 0.6627681663 .4877593 VEAR 20050221187 .3016949 -0.07 0.942613429 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.023045 .149908 20084567975 .2893741 -1.58 0.114 -1.02305 .1104553 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.251975 .1227194 2011 -1.107572 .289238 -3.83 0.000 -1.674577 .5405663 20196873472 .2880807 -2.39 0.017 -1.251975 .1227194 2011 -1.107572 .289238 -3.83 0.000 -1.674577 .5405663 20106873472 .2880807 -2.39 0.017 -1.251975 .1227194 2011 -1.107572 .289238 -3.83 0.000 -1.674577 .5405663 20129805239 .291756 -3.36 0.001 -1.55194 .4086542 20137746445 .2931961 -2.64 0.008 -1.349298 .199908								
Iteration 3: log pseudolikelihood = -383.57267 Iteration 4: log pseudolikelihood = -383.56968 Probit regression Number of obs = 1,134 Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Prob > chi2 = 0.4398 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_ODPpcgbp .8983547 .0857304 10.48 0.000 .4561072 1.189866 LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist .2632319 .0694796 -3.79 0.00039940941270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 PU L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 2005 .0221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.172773 .0796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 .1.58 0.114 -1.02396 .1103653 20097379481 .2925832 .2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.251975 .1227194 2011 .1.07572 .289238 -3.83 0.000 .1674577 .5406566 20129285239 .2917756 .3.36 0.001 .1.552394 .4086542 20137746445 .2931961 -2.64 0.008 .1.3492981999908								
Iteration 4: log pseudolikelihood = -383.56968 Iteration 5: log pseudolikelihood = -383.56968 Probit regression Log pseudolikelihood = -383.56968 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Pseudo R2 = 0.4398 Pseudo R2 = 0.440 0.6627681663 .4877593 Pseudo R2 = 0.6251187 .3016949 -0.07 0.9426134299 .5691925 Pseudo R2 = 0.6251187 .3016949 -0.07 0.9426134299 .5691925 Pseudo R2 = 0.6251187 .3016949 -0.07 0.9426134299 .5691925 Pseudo R2 = 0.221187 .2892938 -2.252 0.912 -1.3114011644956 Pseudo R2 = 0.448 0.988 -1.4577754865666 Pseudo R2 = 0.988239 .291756 -3.36 0.901 -1.552394488546 Pseudo R2 = 0.988239 .2917756 -3.36 0.901								
Iteration 5: log pseudolikelihood = -383.56968 Probit regression Number of obs = 1,134 Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Pseudo R2 = 0.4398 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_ODPpcgbp								
Probit regression Number of obs wald chi2(21) = 1,134 Wald chi2(21) Log pseudolikelihood = -383.56968 Prob > chi2 = 0.0000 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .8229866 .1871868 4.40 0.000 .4561072 1.189866 BIPM_GeomCMCs_2019 .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 .3994094 -1270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU L1. 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2005 6221187 .3016949								
Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Pseudo R2 = 0.4398 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .8229866 .1871868 4.40 0.000 .4561072 1.189866 LnWB_GOPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 .3394094 1270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU L1. 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .332731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2006 0221187 .3	iteration 5.	TOB	pseudolikelind	Jou = -385.50	0900			
Wald chi2(21) = 264.67 Prob > chi2 = 0.0000 Log pseudolikelihood = -383.56968 Pseudo R2 = 0.4398 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .8229866 .1871868 4.40 0.000 .4561072 1.189866 LnWB_GOPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 .33438474 .5336152 pU L1. 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .332731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2005 0221187 .3016949 -0.07 0.942 6134299 .691925 2006 6262168 .2788602 <td>Prohit regressi</td> <td>on</td> <td></td> <td></td> <td>Numbe</td> <td>er of obs</td> <td></td> <td>1 134</td>	Prohit regressi	on			Numbe	er of obs		1 134
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in obie regressi	.011						
Log pseudolikelihood = -383.56968 Pseudo R2 = 0.4398 TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL .8229866 .1871868 4.40 0.000 .4561072 1.189866 LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist2632319 .0694796 -3.79 0.00039940941270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .291756 -3.36 0.001 -1.5523944486562 20137746445 .2931961 -2.64 0.008 -1.349298199908								
Robust TREATED Robust Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_PRL LnWB_GDPpcgbp .8229866 .1871868 4.40 0.000 .4561072 1.189866 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .6694796 -3.79 0.000 .3438474 .5336152 pU .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU .3355828 1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2006 6262168 .2788602 -2.25 0.025 -1.172773 .0796607 2006 6262168 .2788602 -2.25 0.012 -1.849098 .108653 2009 3737481 .2925832 -2.52<	log nseudolikel	ihoo	4 383 56969	2				
TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_GDPpcgbp .8229866 .1871868 4.40 0.000 .4561072 1.189866 LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 .3994094 1270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU . 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR . . .2021187 .3016949 -0.07 0.942 6134299 .5691925 <t< td=""><td>LOG PSeudolikei</td><td>.11000</td><td>a = -385.56500</td><td>,</td><td>rseu</td><td></td><td>- 0</td><td>.+556</td></t<>	LOG PSeudolikei	.11000	a = -385.56500	,	rseu		- 0	.+556
TREATED Coef. Std. Err. z P> z [95% Conf. Interval] LnWB_GDPpcgbp .8229866 .1871868 4.40 0.000 .4561072 1.189866 LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 .3994094 -1270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 PU . 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR . . .0221187 .3016949 -0.07 0.942 6134299 .5691925 .2006								
LnWB_PRL .8229866 .1871868 4.40 0.000 .4561072 1.189866 LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 .3438474 .5336152 pU .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU .1. 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2005 0221187 .3016949 -0.07 0.942 .6134299 .5691925 2006 6221187 .3016949 -0.07 0.942 .6134299 .5691925 2006 6221187 <td></td> <td></td> <td></td> <td>Robust</td> <td></td> <td></td> <td></td> <td></td>				Robust				
LnWB_GDPpcgbp .8983547 .0857304 10.48 0.000 .7303262 1.066383 BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist2632319 .0694796 -3.79 0.00039940941270544 .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908	TREA	TED	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
BIPM_GeomCMCs_2019 .0141068 .0061784 2.28 0.022 .0019974 .0262161 LnCEPII_dist 2632319 .0694796 -3.79 0.000 3994094 1270544 LnISO_Population .4387313 .0484111 9.06 0.000 .3438474 .5336152 pU L1. 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2005 0221187 .3016949 -0.07 0.942 6134299 .5691925 2006 6262168 .2788602 -2.25 0.025 -1.172773 0796607 2007 4312465 .3143712 -1.37 0.170 -1.047403 .1849098 2008 4567975 .2893741 -1.58 0.114 -1.02396 .1103653 2009 7379481 .2925832 -2.52 0.017 -1.251975 .1227194	LnWB	PRL	.8229866	.1871868	4.40	0.000	.4561072	1.189866
LnCEPII_dist LnISO_Population2632319 .0694796 -3.79 0.00039940941270544 .5336152 pU L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908	LnWB_GDPpc	gbp	.8983547	.0857304	10.48	0.000	.7303262	1.066383
LnCEPII_dist LnISO_Population2632319 .0694796 -3.79 0.00039940941270544 .5336152 pU L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908	BIPM_GeomCMCs_2	019	.0141068	.0061784	2.28	0.022	.0019974	.0262161
pU L1. 3673151 .3355828 -1.09 0.274 -1.025045 .2904151 L2. -1.148176 .3382731 -3.39 0.001 -1.811179 485173 L3. 1402035 .3203951 -0.44 0.662 7681663 .4877593 YEAR 2005 0221187 .3016949 -0.07 0.942 6134299 .5691925 2006 6262168 .2788602 -2.25 0.025 -1.172773 0796607 2007 4312465 .3143712 -1.37 0.170 -1.047403 .1849098 2008 4567975 .2893741 -1.58 0.114 -1.02396 .1103653 2009 7379481 .2925832 -2.52 0.012 -1.311401 .1644956 2010 6873472 .2808087 -2.39 0.017 -1.251975 .1227194 2011 -1.107572 .2892938 -3.83 0.000 -1.674577 .5405666 2012 9805239 .2917756 -3.36 0.001 -1.552394 .4086542			2632319	.0694796	-3.79	0.000	3994094	1270544
L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908	LnISO_Populat	ion	.4387313	.0484111	9.06	0.000	.3438474	.5336152
L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908								
L13673151 .3355828 -1.09 0.274 -1.025045 .2904151 L21.148176 .3382731 -3.39 0.001 -1.811179485173 L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908		рU						
L31402035 .3203951 -0.44 0.6627681663 .4877593 YEAR 20050221187 .3016949 -0.07 0.9426134299 .5691925 20066262168 .2788602 -2.25 0.025 -1.1727730796607 20074312465 .3143712 -1.37 0.170 -1.047403 .1849098 20084567975 .2893741 -1.58 0.114 -1.02396 .1103653 20097379481 .2925832 -2.52 0.012 -1.3114011644956 20106873472 .2880807 -2.39 0.017 -1.2519751227194 2011 -1.107572 .2892938 -3.83 0.000 -1.6745775405666 20129805239 .2917756 -3.36 0.001 -1.5523944086542 20137746445 .2931961 -2.64 0.008 -1.3492981999908		L1.	3673151	.3355828	-1.09	0.274	-1.025045	.2904151
YEAR 2005 0221187 .3016949 -0.07 0.942 6134299 .5691925 2006 6262168 .2788602 -2.25 0.025 -1.172773 0796607 2007 4312465 .3143712 -1.37 0.170 -1.047403 .1849098 2008 4567975 .2893741 -1.58 0.114 -1.02396 .1103653 2009 7379481 .2925832 -2.52 0.012 -1.311401 1644956 2010 6873472 .2880807 -2.39 0.017 -1.251975 1227194 2011 -1.107572 .2892938 -3.83 0.000 -1.674577 5405666 2012 9805239 .2917756 -3.36 0.001 -1.552394 4086542 2013 7746445 .2931961 -2.64 0.008 -1.349298 1999908		L2.	-1.148176	.3382731	-3.39	0.001	-1.811179	485173
20050221187.3016949-0.070.9426134299.569192520066262168.2788602-2.250.025-1.172773079660720074312465.3143712-1.370.170-1.047403.184909820084567975.2893741-1.580.114-1.02396.110365320097379481.2925832-2.520.012-1.311401164495620106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908		L3.	1402035	.3203951	-0.44	0.662	7681663	.4877593
20050221187.3016949-0.070.9426134299.569192520066262168.2788602-2.250.025-1.172773079660720074312465.3143712-1.370.170-1.047403.184909820084567975.2893741-1.580.114-1.02396.110365320097379481.2925832-2.520.012-1.311401164495620106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908								
20066262168.2788602-2.250.025-1.172773079660720074312465.3143712-1.370.170-1.047403.184909820084567975.2893741-1.580.114-1.02396.110365320097379481.2925832-2.520.012-1.311401164495620106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908	Y	'EAR						
20074312465.3143712-1.370.170-1.047403.184909820084567975.2893741-1.580.114-1.02396.110365320097379481.2925832-2.520.012-1.311401164495620106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908	20	05	0221187	.3016949	-0.07	0.942	6134299	.5691925
20084567975.2893741-1.580.114-1.02396.110365320097379481.2925832-2.520.012-1.311401164495620106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908	20	906	6262168	.2788602	-2.25	0.025	-1.172773	0796607
20097379481.2925832-2.520.012-1.311401164495620106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908	20	07	4312465	.3143712	-1.37	0.170	-1.047403	.1849098
20106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908	20	808	4567975	.2893741	-1.58	0.114	-1.02396	.1103653
20106873472.2880807-2.390.017-1.25197512271942011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908	20	009	7379481	.2925832	-2.52	0.012	-1.311401	1644956
2011-1.107572.2892938-3.830.000-1.674577540566620129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908								1227194
20129805239.2917756-3.360.001-1.552394408654220137746445.2931961-2.640.008-1.3492981999908								
20137746445 .2931961 -2.64 0.008 -1.3492981999908								
20147971529 .28125 -2.83 0.005 -1.348393245913			7971529	.28125	-2.83	0.005	-1.348393	245913
20155576459 .2989487 -1.87 0.062 -1.143575 .0282827								
20169876264 .29445 -3.35 0.001 -1.5647384105151								
2017 -1.200028 .3020728 -3.97 0.000 -1.792086079761								
							_	_
_cons -11.31658 1.25856 -8.99 0.000 -13.78331 -8.849846	c	ons	-11.31658	1.25856	-8.99	0.000	-13.78331	-8.849846

inear regression			F(22 Prob	uared	= 0 = 0	648 57.88 .0000 .9379 50375
LnInvoicesPop	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
LiinvoicesPop	coer.	Stu. Ent.	Ľ	FYICI	[95% COIII	. Intervalj
LnWB_PRL	1.216917	.0755912	16.10	0.000	1.068473	1.36536
LnWB_GDPpcgbp	1.275696	.0729066	17.50	0.000	1.132524	1.418868
BIPM_GeomCMCs_2019	0108429	.0009704	-11.17	0.000	0127486	0089371
LnCEPII_dist	4881393	.0157778	-30.94	0.000	5191231	4571554
LnISO_Population	216086	.0249955	-8.64	0.000	2651713	1670006
U						
L1.	.3497241	.0453659	7.71	0.000	.260636	.4388122
L2.	.3330051	.0430575	7.73	0.000	.2484503	.4175599
L2.	.219649	.0414944	5.29	0.000	.1381637	.3011344
lambda	.2524964	.1413125	1.79	0.074	0250085	.5300013
YEAR						
2005	.1800435	.0969131	1.86	0.064	0102713	.3703582
2006	0917324	.1126793	-0.81	0.416	3130083	.1295435
2007	0654124	.1140195	-0.57	0.566	28932	.1584953
2008	4188464	.1121239	-3.74	0.000	6390316	1986613
2009	6501224	.1053664	-6.17	0.000	8570374	4432075
2010	5146298	.1045431	-4.92	0.000	719928	3093316
2011	7416724	.1196057	-6.20	0.000	9765501	5067947
2012	6964487	.1051337	-6.62	0.000	9029068	4899906
2013	582492	.1151121	-5.06	0.000	8085452	3564387
2014	5482957	.1010734	-5.42	0.000	7467802	3498111
2015	5057929	.0988661	-5.12	0.000	6999429	3116429
2016	8972401	.1104117	-8.13	0.000	-1.114063	6804172
2017	-1.191867	.1191627	-10.00	0.000	-1.425875	9578592
_cons	-17.52871	1.026036	-17.08	0.000	-19.54361	-15.51382

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)	2005.YEAR = 0 2006.YEAR = 0 2007.YEAR = 0 2008.YEAR = 0 2009.YEAR = 0 2010.YEAR = 0 2011.YEAR = 0 2012.YEAR = 0 2013.YEAR = 0 2014.YEAR = 0 2015.YEAR = 0 2016.YEAR = 0	
	F(13, 625) = Prob > F =	

Link test

Source	SS	df	MS		er of obs	=	648
M - d - 7	2544 2426		4070 45504	, -	645)	=	5230.79
Model	2544.91068	2	1272.45534	Prob	> F	=	0.0000
Residual	156.90442	645	.243262667		uared .	=	0.9419
				Adj	R-squared	=	0.9417
Total	2701.8151	647	4.17591206	Root	MSE	=	.49322
LnInvoices~p	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
		.1117716	9.22	0.000	.8110754	1	1.250036
_hat	1.030556	.111//10	9.22	0.000			
_hat _hatsq	1.030556 .0010654	.0038823		0.784	0065581	L	.0086889

Model G1

Iteration 0: log pse	eudolikelihoo	d = -502.75	97			
.	eudolikelihoo					
	eudolikelihoo					
	eudolikelihoo					
Probit regression			Number	of obs	= 8	96
_			Wald ch	hi2(21)	= 171.	50
			Prob >	chi2	= 0.00	00
Log pseudolikelihood =	-234.93177		Pseudo	R2	= 0.53	27
		Robust				
TREATED	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
LnWB PRL	1.288559	.3180387	4.05	0.000	.6652149	1.911904
LnWB_GDPpcgbp	1.57834	.1713821	9.21	0.000	1.242437	1.914243
LnBIPM_ProbCMCs_2019	1377743	.0618693	-2.23	0.026	2590358	0165128
LnCEPII_dist	5003829	.0934655	-5.35	0.000	683572	3171938
LnISO_Population	.8802888	.0991039	8.88	0.000	.6860487	1.074529
pU						
L1.	4771806	.4116271	-1.16	0.246	-1.283955	.3295938
L2.	-1.379842	.4044985	-3.41	0.001	-2.172644	5870391
L3.	3093736	.3641698	-0.85	0.396	-1.023133	.4043862
YEAR						
2005	.0337844	.376637	0.09	0.929	7044105	.7719792
2006	6591003	.380549	-1.73	0.083	-1.404963	.086762
2007	9389165	.4104708	-2.29	0.022	-1.743424	1344085
2008	8462657	.3994197	-2.12	0.034	-1.629114	0634174
2009	-1.199542	.4038257	-2.97	0.003	-1.991026	4080583
2010	-1.051187	.404565	-2.60	0.009	-1.84412	2582538
2011	-1.690581	.3995006	-4.23	0.000	-2.473588	9075741
2012	-1.474223	.4127151	-3.57	0.000	-2.28313	6653164
2013	-1.335644	.4126961	-3.24	0.001	-2.144514	5267745
2014	-1.195563	.3920083	-3.05	0.002	-1.963886	4272412
2015	-1.055583	.3810894	-2.77	0.006	-1.802504	3086613
2016	-1.827495	.3998056	-4.57	0.000	-2.6111	-1.043891
2017	-1.767026	.4216751	-4.19	0.000	-2.593494	9405577
_cons	-21.42177	2.214983	-9.67	0.000	-25.76305	-17.08048

Linear regression			Number F(22, ! Prob > R-squa Root M	F	= 9 = 381 = 0.00 = 0.93 = .493	900 394
		Robust		- 1.1		
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
LnWB_PRL	.3531163	.0888604	3.97	0.000	.1785625	.52767
LnWB_GDPpcgbp	2.050616	.0858666	23.88	0.000	1.881944	2.219289
LnBIPM_ProbCMCs_2019	2999818	.0363754	-8.25	0.000	3714361	2285275
LnCEPII_dist	3440262	.0168584	-20.41	0.000	3771422	3109102
LnISO_Population	2596521	.0276372	-9.40	0.000	3139415	2053627
U						
L1.	.3813392	.0488852	7.80	0.000	.2853111	.4773672
L2.	.2696926	.0495894	5.44	0.000	.1722813	.3671039
L3.	.1870145	.0474517	3.94	0.000	.0938023	.2802267
lambda	.2631043	.1762271	1.49	0.136	083069	.6092776
YEAR						
2005	.2073651	.0983897	2.11	0.036	.0140925	.4006378
2006	100305	.1205786	-0.83	0.406	3371645	.1365546
2007	1361158	.1240081	-1.10	0.273	3797123	.1074806
2008	3741386	.1130257	-3.31	0.001	5961617	1521156
2009	7027645	.1051438	-6.68	0.000	9093046	4962244
2010	5946361	.1055619	-5.63	0.000	8019976	3872746
2011	7316469	.1277446	-5.73	0.000	9825831	4807106
2012	8340134	.1081834	-7.71	0.000	-1.046524	6215025
2013	7306132	.1189322	-6.14	0.000	9642387	4969877
2014	7601733	.1061207	-7.16	0.000	9686323	5517142
2015	8752069	.1053666	-8.31	0.000	-1.082185	6682291
2016	-1.31973	.1149759	-11.48	0.000	-1.545584	-1.093876
2017	-1.583862	.1304663	-12.14	0.000	-1.840144	-1.327579
_cons	-25.2942	1.126147	-22.46	0.000	-27.50636	-23.08204

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
(8)	2012.YEAR = 0	
(9)	2013.YEAR = 0	
(10)	2014.YEAR = 0	
(11)	2015.YEAR = 0	
(12)	2016.YEAR = 0	
(13)	2017.YEAR = 0	
	F(13, 541) =	26.69
	Prob > F =	0.0000

Link test

-

	obs = =	Number of $response results F(2, 561)$	MS	df	SS	Source
	=	Prob > F	071.93026	2	2143.86052	Model
0.9421	=	R-squared	234845401	561	131.74827	Residual
0.9419	red =	Adj R-squar				
.48461	=	Root MSE	4.0419339	563	2275.60879	Total
T	% Conf.	t [95%	t P	Std. Err.	Coef.	LnInvoices~p
Intervalj						
1.288219	63079	.76	7.67 0	.1336776	1.025649	_hat
	63079 80835			.1336776 .0045625	1.025649 .0008781	_hat _hatsq

Davidson and McKinnon test

Linear regression			Number F(23, 9 Prob > R-squan Root M	F	= 5 = 373. = 0.00 = 0.94 = .490	000 01
LnInvoicesPop	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
LnWB PRL	053928	.1857533	-0.29	0.772	4188155	.3109596
LnWB_GDPpcgbp	.5027104	.6956891	0.72	0.470	8638781	1.869299
LnBIPM_ProbCMCs_2019	0667173	.1109031	-0.60	0.548	2845716	.151137
LnCEPII_dist	0582354	.1267691	-0.46	0.646	3072565	.1907857
LnISO_Population	0458663	.0957251	-0.48	0.632	2339056	.142173
U						
L1.	.0934597	.1373007	0.68	0.496	1762493	.3631687
L2.	.00057	.1238784	0.00	0.996	2427726	.2439126
L3.	.010232	.0880899	0.12	0.908	1628089	.1832729
lambda	.1361465	.1879553	0.72	0.469	2330666	.5053596
YEAR						
2005	.0884302	.1077586	0.82	0.412	1232473	.3001076
2006	.0311728	.1330813	0.23	0.815	2302476	.2925933
2007	0325792	.1333002	-0.24	0.807	2944297	.2292714
2008	.008334	.1972017	0.04	0.966	3790425	.3957105
2009	1346089	.2734298	-0.49	0.623	6717253	.4025075
2010	1301134	.2389437	-0.54	0.586	5994864	.3392595
2011	0736479	.3299094	-0.22	0.823	7217109	.5744152
2012	1582627	.3194775	-0.50	0.621	7858336	.4693082
2013	1076353	.3087559	-0.35	0.728	7141451	.4988745
2014	1404245	.2973409	-0.47	0.637	7245111	.4436622
2015	1834525	.3182648	-0.58	0.565	8086413	.4417363
2016	2953846	.4624266	-0.64	0.523	-1.20376	.6129908
2017	3211824	.5756842	-0.56	0.577	-1.452037	.8096726
hat	.8124062	.3552309	2.29	0.023	.1146025	1.51021
cons	-6.024281	8.643885	-0.70	0.486	-23.00404	10.95548

(1)	2005.YEAR = 0	
(2)	2006.YEAR = 0	
(3)	2007.YEAR = 0	
(4)	2008.YEAR = 0	
(5)	2009.YEAR = 0	
(6)	2010.YEAR = 0	
(7)	2011.YEAR = 0	
	2012.YEAR = 0	
	2013.YEAR = 0	
	2014.YEAR = 0	
	2015.YEAR = 0	
	2016.YEAR = 0	
	2017.YEAR = 0	
()		
	F(13, 540) =	0.28
	Prob > F =	0.9946
		0.0040

Linear regression			Nu	mber of obs	s =	564
5				23, 540)		378.21
				ob > F		0.0000
			R-	squared		0.9401
				ot MSE	=	.49095
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf	Interval]
				17141	[55% com.	111001 1011
LnWB_PRL	.7974128	.4136427	1.93	0.054	0151332	1.609959
LnWB_GDPpcgbp	1.194412	.5552636	2.15	0.032	.1036707	2.285153
BIPM_CMCs	0162823	.0076036	-2.14	0.033	0312186	001346
LnCEPII_dist	3545565	.1723232	-2.06	0.040	6930625	0160504
LnISO_Population	1227573	.0785469	-1.56	0.119	2770523	.0315376
U						
L1.	.2793594	.150092	1.86	0.063	0154764	.5741952
L2.	.2086622	.1141562	1.83	0.068	0155825	.4329069
L3.	.1435273	.0815319	1.76	0.079	0166312	.3036858
lambda	.3468526	.2163862	1.60	0.110	0782092	.7719144
YEAR						
2005	.1861038	.1350021	1.38	0.169	0790898	.4512974
2006	0363622	.1195494	-0.30	0.761	271201	.1984766
2007	0587587	.1210213	-0.49	0.628	296489	.1789715
2008	2547488	.1668369	-1.53	0.127	5824778	.0729801
2009	5284917	.2717653	-1.94	0.052	-1.062338	.0053552
2010	4357111	.2246478	-1.94	0.053	8770017	.0055796
2011	5374838	.2691439	-2.00	0.046	-1.066181	0087866
2012	574859	.2864681	-2.01	0.045	-1.137587	0121305
2013	4576488	.2348011	-1.95	0.052	9188843	.0035867
2014	4611261	.2329202	-1.98	0.048	9186668	0035853
2015	4536222	.2393071	-1.90	0.059	9237092	.0164647
2016	7978794	.3953984	-2.02	0.044	-1.574587	0211719
2017	-1.013126	.4822558	-2.10	0.036	-1.960454	0657988
hat2	.2325329	.3738366	0.62	0.534	5018194	.9668851
cons	-16.46988	7.64537	-2.15	0.032	-31.48819	-1.451568
	10.40500	/:0455/	2.15	0.052	51.40015	2.451500

(3) (4) (5) (6) (7) (8)	2005.YEAR = 0 2006.YEAR = 0 2007.YEAR = 0 2008.YEAR = 0 2009.YEAR = 0 2010.YEAR = 0 2011.YEAR = 0 2012.YEAR = 0 2013.YEAR = 0
	2015.YEAR = 0
	2016.YEAR = 0 2017.YEAR = 0
	F(13, 540) = 0.37 Prob > F = 0.9794

Model H1

```
Fitting Poisson model:
Iteration 0:
               log pseudolikelihood = -.04372071
Iteration 1:
               log pseudolikelihood = -.04195329
Iteration 2:
               log pseudolikelihood = -.0411505
Iteration 3:
               log pseudolikelihood = -.04103759
Iteration 4:
               log pseudolikelihood = -.04103737
Iteration 5:
               log pseudolikelihood = -.04103737
Fitting constant-only model:
Iteration 0:
               log pseudolikelihood = -.0474305
Iteration 1:
               log pseudolikelihood = -.04546309
Iteration 2:
               log pseudolikelihood = -.04546225
               log pseudolikelihood = -.04546211
Iteration 3:
Iteration 4:
               log pseudolikelihood = -.04546211 (backed up)
Fitting full model:
Iteration 0:
               log pseudolikelihood = -.04546211
               log pseudolikelihood = -.04244636
Iteration 1:
Iteration 2:
               log pseudolikelihood = -.04111914
Iteration 3:
               log pseudolikelihood = -.04103873
Iteration 4:
               log pseudolikelihood = -.0410374
                                                 (not concave)
Iteration 5:
               log pseudolikelihood = -.04103738
                                               Number of obs
Negative binomial regression
                                                                 =
                                                                        1.377
                                                                      3050.04
                                               Wald chi2(21)
                                                                 =
                                               Prob > chi2
Dispersion
                                                                       0.0000
                     = mean
                                                                 =
Log pseudolikelihood = -.04103738
                                               Pseudo R2
                                                                       0.0973
                                                                 =
                               Robust
                              Std. Err.
                                                  P>|z|
                                                            [95% Conf. Interval]
    InvoicesPop
                      Coef.
                                             z
       LnWB_PRL
                    1.254849
                              .1273218
                                           9.86
                                                  0.000
                                                            1.005303
                                                                        1.504395
  LnWB_GDPpcgbp
                    1.280785
                              .1277083
                                          10.03
                                                  0.000
                                                            1.030482
                                                                        1.531089
      BIPM_CMCs
                    -.049127
                              .0021096
                                         -23.29
                                                  0.000
                                                           -.0532617
                                                                       -.0449922
                                         -14.55
   LnCEPII_dist
                    -.558762
                              .0384018
                                                  0.000
                                                           -.6340281
                                                                       -.4834959
LnISO_Populat~n
                    .3325169
                             .0344214
                                           9.66
                                                  0.000
                                                            .2650522
                                                                        .3999816
           YEAR
          2002
                    1.193434
                               .215571
                                           5.54
                                                  0.000
                                                            .7709228
                                                                        1.615946
                    1.259559
                                                  0.000
                                                            .8317593
          2003
                                           5.77
                                                                        1,687359
                             .2182692
                                                  0.000
          2004
                    1.55385
                             .2046693
                                           7.59
                                                            1.152706
                                                                        1.954995
                                                  0.000
          2005
                    1.587963
                                .20764
                                           7.65
                                                            1.180996
                                                                         1.99493
                                                            .962835
          2006
                    1.378669
                                           6.50
                                                  0.000
                               .212164
                                                                        1,794502
                                                  0.000
          2007
                    1.473126
                              .1928031
                                           7.64
                                                            1.095239
                                                                        1.851013
          2008
                    1.136466
                              .2214286
                                           5.13
                                                 0.000
                                                            .7024738
                                                                        1.570458
          2009
                                           3.79 0.000
                    .8965622 .2368459
                                                            .4323528
                                                                        1.360772
          2010
                   1.119067 .1909451
                                           5.86 0.000
                                                            .7448213
                                                                        1.493313
                             .2108571
                                           4.59 0.000
          2011
                    .9678055
                                                            .5545333
                                                                        1.381078
                              .1932551
          2012
                    1.006595
                                           5.21
                                                  0.000
                                                            .6278219
                                                                        1.385368
          2013
                    1.024209
                               .1948271
                                           5.26
                                                  0.000
                                                            .6423548
                                                                        1.406063
                                                  0.000
                                           5.43
          2014
                    1.05371
                               .1941153
                                                            .6732514
                                                                        1.434169
          2015
                    1.006142
                              .2031869
                                           4.95
                                                  0.000
                                                                        1.404381
                                                            .6079032
          2016
                    .7788933
                              .1852894
                                           4.20
                                                  0.000
                                                            .4157327
                                                                        1.142054
          2017
                    .5680915
                              .2217141
                                           2.56
                                                  0.010
                                                            .1335399
                                                                        1.002643
          _cons
                   -26.92236
                              1.807223
                                         -14.90
                                                  0.000
                                                           -30.46445
                                                                       -23.38026
                   -28.77903
       /lnalpha
                                      .
                                                                               .
          alpha
                    3.17e-13
                                      .
                                                                    .
```

Model I1

Linear regression	1		Ν	umber of c	bs =	524
			F	(13, 510)	=	172.82
			Р	rob > F	=	0.0000
			R	-squared	=	0.7969
			R	oot MSE	=	.93909
		Robust				
LnInvoicesPop	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LnWB_PRL	1.234759	.1433983	8.61	0.000	.9530354	1.516483
LnWB_GDPpcgbp	1.272517	.1189786	10.70	0.000	1.038768	1.506265
BIPM_CMCs	0162184	.0039194	-4.14	0.000	0239186	0085183
LnCEPII_dist	4702591	.0440446	-10.68	0.000	5567902	383728
LnISO_Populat~n	2424955	.0505897	-4.79	0.000	3418852	1431057
YEAR						
2010	.1127343	.1730359	0.65	0.515	2272166	.4526851
2011	.105014	.185326	0.57	0.571	2590822	.4691103
2012	.0739921	.1717113	0.43	0.667	2633564	.4113406
2013	.0815179	.1705558	0.48	0.633	2535605	.4165962
2014	.1321456	.1776032	0.74	0.457	2167782	.4810695
2015	.1358086	.1722977	0.79	0.431	2026919	.4743092
2016	1947744	.1818467	-1.07	0.285	5520351	.1624864
2017	3414605	.1882499	-1.81	0.070	7113012	.0283802
_cons	-17.92705	1.702443	-10.53	0.000	-21.27172	-14.58239

	Μ	0	del	J1
--	---	---	-----	----

Linear regression	า		N	umber of o	bs =	909
			F	(22, 886)	=	168.94
			P	rob > F	=	0.0000
			R	-squared	=	0.7990
				oot MSE	=	.88004
		Robust				
LnAmount	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LnWB_PRL	1.227039	.1015138	12.09	0.000	1.027803	1.426274
LnWB_GDPpcgbp	1.093873	.0755286	14.48	0.000	.945637	1.242109
BIPM_CMCs	0135464	.0025653	-5.28	0.000	0185812	0085117
LnCEPII_dist	355838	.0307832	-11.56	0.000	4162546	2954214
LnISO_Populat~n	.6993046	.0334827	20.89	0.000	.6335899	.7650193
LnAvPrice	1.00568	.0364522	27.59	0.000	.9341374	1.077223
YEAR						
2002	.9811902	.1767436	5.55	0.000	.6343052	1.328075
2003	.9848605	.1890606	5.21	0.000	.6138017	1.355919
2004	1.185591	.1830361	6.48	0.000	.8263565	1.544826
2005	1.259619	.1835897	6.86	0.000	.8992971	1.61994
2006	1.017596	.1795931	5.67	0.000	.6651183	1.370073
2007	1.141101	.1735722	6.57	0.000	.8004407	1.481762
2008	.6147978	.1917575	3.21	0.001	.2384458	.9911498
2009	.4780578	.1794569	2.66	0.008	.1258475	.8302681
2010	.6568226	.1790258	3.67	0.000	.3054585	1.008187
2011	.6006337	.1925906	3.12	0.002	.2226466	.9786208
2012	.5496334	.1828935	3.01	0.003	.1906784	.9085884
2013	.5882491	.1836467	3.20	0.001	.2278158	.9486824
2014	.6182118	.1883186	3.28	0.001	.2486092	.9878143
2015	.6223945	.1807776	3.44	0.001	.2675922	.9771968
2016	.3331467	.1836443	1.81	0.070	0272819	.6935752
2017	.1888625	.1911476	0.99	0.323	1862925	.5640175
_cons	-16.74989	1.058168	-15.83	0.000	-18.8267	-14.67308

More information

Contact us

For more information, contact us:

Senior Economist Mike King , mike.king@npl.co.uk Economist Eugenio Renedo, eugenio.renedo@npl.co.uk

National Physical Laboratory Hampton Road, Teddington, Middlesex, TW11 0LW Web: https://www.npl.co.uk/digital Tel: 020 8977 3222